rig/providers/gemini/embedding.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
// ================================================================
//! Google Gemini Embeddings Integration
//! From [Gemini API Reference](https://ai.google.dev/api/embeddings)
// ================================================================
use serde_json::json;
use crate::embeddings::{self, EmbeddingError};
use super::{client::ApiResponse, Client};
/// `embedding-001` embedding model
pub const EMBEDDING_001: &str = "embedding-001";
/// `text-embedding-004` embedding model
pub const EMBEDDING_004: &str = "text-embedding-004";
#[derive(Clone)]
pub struct EmbeddingModel {
client: Client,
model: String,
ndims: Option<usize>,
}
impl EmbeddingModel {
pub fn new(client: Client, model: &str, ndims: Option<usize>) -> Self {
Self {
client,
model: model.to_string(),
ndims,
}
}
}
impl embeddings::EmbeddingModel for EmbeddingModel {
const MAX_DOCUMENTS: usize = 1024;
fn ndims(&self) -> usize {
match self.model.as_str() {
EMBEDDING_001 => 768,
EMBEDDING_004 => 1024,
_ => 0, // Default to 0 for unknown models
}
}
#[cfg_attr(feature = "worker", worker::send)]
async fn embed_texts(
&self,
documents: impl IntoIterator<Item = String> + Send,
) -> Result<Vec<embeddings::Embedding>, EmbeddingError> {
let documents: Vec<_> = documents.into_iter().collect();
let mut request_body = json!({
"model": format!("models/{}", self.model),
"content": {
"parts": documents.iter().map(|doc| json!({ "text": doc })).collect::<Vec<_>>(),
},
});
if let Some(ndims) = self.ndims {
request_body["output_dimensionality"] = json!(ndims);
}
let response = self
.client
.post(&format!("/v1beta/models/{}:embedContent", self.model))
.json(&request_body)
.send()
.await?
.error_for_status()?
.json::<ApiResponse<gemini_api_types::EmbeddingResponse>>()
.await?;
match response {
ApiResponse::Ok(response) => {
let chunk_size = self.ndims.unwrap_or_else(|| self.ndims());
Ok(documents
.into_iter()
.zip(response.embedding.values.chunks(chunk_size))
.map(|(document, embedding)| embeddings::Embedding {
document,
vec: embedding.to_vec(),
})
.collect())
}
ApiResponse::Err(err) => Err(EmbeddingError::ProviderError(err.message)),
}
}
}
// =================================================================
// Gemini API Types
// =================================================================
/// Rust Implementation of the Gemini Types from [Gemini API Reference](https://ai.google.dev/api/embeddings)
#[allow(dead_code)]
mod gemini_api_types {
use serde::{Deserialize, Serialize};
use serde_json::Value;
use crate::providers::gemini::gemini_api_types::{CodeExecutionResult, ExecutableCode};
#[derive(Serialize)]
#[serde(rename_all = "camelCase")]
pub struct EmbedContentRequest {
model: String,
content: EmbeddingContent,
task_type: TaskType,
title: String,
output_dimensionality: i32,
}
#[derive(Serialize)]
pub struct EmbeddingContent {
parts: Vec<EmbeddingContentPart>,
/// Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn
/// conversations, otherwise can be left blank or unset.
role: Option<String>,
}
/// A datatype containing media that is part of a multi-part Content message.
/// - A Part consists of data which has an associated datatype. A Part can only contain one of the accepted types in Part.data.
/// - A Part must have a fixed IANA MIME type identifying the type and subtype of the media if the inlineData field is filled with raw bytes.
#[derive(Serialize)]
pub struct EmbeddingContentPart {
/// Inline text.
text: String,
/// Inline media bytes.
inline_data: Option<Blob>,
/// A predicted FunctionCall returned from the model that contains a string representing the [FunctionDeclaration.name]
/// with the arguments and their values.
function_call: Option<FunctionCall>,
/// The result output of a FunctionCall that contains a string representing the [FunctionDeclaration.name] and a structured
/// JSON object containing any output from the function is used as context to the model.
function_response: Option<FunctionResponse>,
/// URI based data.
file_data: Option<FileData>,
/// Code generated by the model that is meant to be executed.
executable_code: Option<ExecutableCode>,
/// Result of executing the ExecutableCode.
code_execution_result: Option<CodeExecutionResult>,
}
/// Raw media bytes.
/// Text should not be sent as raw bytes, use the 'text' field.
#[derive(Serialize)]
pub struct Blob {
/// Raw bytes for media formats.A base64-encoded string.
data: String,
/// The IANA standard MIME type of the source data. Examples: - image/png - image/jpeg If an unsupported MIME type is
/// provided, an error will be returned. For a complete list of supported types, see Supported file formats.
mime_type: String,
}
#[derive(Serialize)]
pub struct FunctionCall {
/// The name of the function to call. Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length of 63.
name: String,
/// The function parameters and values in JSON object format.
args: Option<Value>,
}
#[derive(Serialize)]
pub struct FunctionResponse {
/// The name of the function to call. Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length of 63.
name: String,
/// The result of the function call in JSON object format.
result: Value,
}
#[derive(Serialize)]
#[serde(rename_all = "camelCase")]
pub struct FileData {
/// The URI of the file.
file_uri: String,
/// The IANA standard MIME type of the source data.
mime_type: String,
}
#[derive(Serialize)]
#[serde(rename_all = "SCREAMING_SNAKE_CASE")]
pub enum TaskType {
/// Unset value, which will default to one of the other enum values.
Unspecified,
/// Specifies the given text is a query in a search/retrieval setting.
RetrievalQuery,
/// Specifies the given text is a document from the corpus being searched.
RetrievalDocument,
/// Specifies the given text will be used for STS.
SemanticSimilarity,
/// Specifies that the given text will be classified.
Classification,
/// Specifies that the embeddings will be used for clustering.
Clustering,
/// Specifies that the given text will be used for question answering.
QuestionAnswering,
/// Specifies that the given text will be used for fact verification.
FactVerification,
}
#[derive(Debug, Deserialize)]
pub struct EmbeddingResponse {
pub embedding: EmbeddingValues,
}
#[derive(Debug, Deserialize)]
pub struct EmbeddingValues {
pub values: Vec<f64>,
}
}