rig/providers/gemini/completion.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
// ================================================================
//! Google Gemini Completion Integration
//! From [Gemini API Reference](https://ai.google.dev/api/generate-content)
// ================================================================
/// `gemini-1.5-flash` completion model
pub const GEMINI_1_5_FLASH: &str = "gemini-1.5-flash";
/// `gemini-1.5-pro` completion model
pub const GEMINI_1_5_PRO: &str = "gemini-1.5-pro";
/// `gemini-1.5-pro-8b` completion model
pub const GEMINI_1_5_PRO_8B: &str = "gemini-1.5-pro-8b";
/// `gemini-1.0-pro` completion model
pub const GEMINI_1_0_PRO: &str = "gemini-1.0-pro";
use gemini_api_types::{
Content, ContentCandidate, FunctionDeclaration, GenerateContentRequest,
GenerateContentResponse, GenerationConfig, Part, Role, Tool,
};
use serde_json::{Map, Value};
use std::convert::TryFrom;
use crate::completion::{self, CompletionError, CompletionRequest};
use super::Client;
// =================================================================
// Rig Implementation Types
// =================================================================
#[derive(Clone)]
pub struct CompletionModel {
client: Client,
pub model: String,
}
impl CompletionModel {
pub fn new(client: Client, model: &str) -> Self {
Self {
client,
model: model.to_string(),
}
}
}
impl completion::CompletionModel for CompletionModel {
type Response = GenerateContentResponse;
#[cfg_attr(feature = "worker", worker::send)]
async fn completion(
&self,
mut completion_request: CompletionRequest,
) -> Result<completion::CompletionResponse<GenerateContentResponse>, CompletionError> {
let mut full_history = Vec::new();
full_history.append(&mut completion_request.chat_history);
let prompt_with_context = completion_request.prompt_with_context();
full_history.push(completion::Message {
role: "user".into(),
content: prompt_with_context,
});
// Handle Gemini specific parameters
let additional_params = completion_request
.additional_params
.unwrap_or_else(|| Value::Object(Map::new()));
let mut generation_config = serde_json::from_value::<GenerationConfig>(additional_params)?;
// Set temperature from completion_request or additional_params
if let Some(temp) = completion_request.temperature {
generation_config.temperature = Some(temp);
}
// Set max_tokens from completion_request or additional_params
if let Some(max_tokens) = completion_request.max_tokens {
generation_config.max_output_tokens = Some(max_tokens);
}
let request = GenerateContentRequest {
contents: full_history
.into_iter()
.map(|msg| Content {
parts: vec![Part {
text: Some(msg.content),
..Default::default()
}],
role: match msg.role.as_str() {
"system" => Some(Role::Model),
"user" => Some(Role::User),
"assistant" => Some(Role::Model),
_ => None,
},
})
.collect(),
generation_config: Some(generation_config),
safety_settings: None,
tools: Some(
completion_request
.tools
.into_iter()
.map(Tool::from)
.collect(),
),
tool_config: None,
system_instruction: Some(Content {
parts: vec![Part {
text: Some("system".to_string()),
..Default::default()
}],
role: Some(Role::Model),
}),
};
tracing::debug!("Sending completion request to Gemini API");
let response = self
.client
.post(&format!("/v1beta/models/{}:generateContent", self.model))
.json(&request)
.send()
.await?
.error_for_status()?
.json::<GenerateContentResponse>()
.await?;
match response.usage_metadata {
Some(ref usage) => tracing::info!(target: "rig",
"Gemini completion token usage: {}",
usage
),
None => tracing::info!(target: "rig",
"Gemini completion token usage: n/a",
),
}
tracing::debug!("Received response");
completion::CompletionResponse::try_from(response)
}
}
impl From<completion::ToolDefinition> for Tool {
fn from(tool: completion::ToolDefinition) -> Self {
Self {
function_declaration: FunctionDeclaration {
name: tool.name,
description: tool.description,
parameters: None, // tool.parameters, TODO: Map Gemini
},
code_execution: None,
}
}
}
impl TryFrom<GenerateContentResponse> for completion::CompletionResponse<GenerateContentResponse> {
type Error = CompletionError;
fn try_from(response: GenerateContentResponse) -> Result<Self, Self::Error> {
match response.candidates.as_slice() {
[ContentCandidate { content, .. }, ..] => Ok(completion::CompletionResponse {
choice: match content.parts.first().unwrap() {
Part {
text: Some(text), ..
} => completion::ModelChoice::Message(text.clone()),
Part {
function_call: Some(function_call),
..
} => {
let args_value = serde_json::Value::Object(
function_call.args.clone().unwrap_or_default(),
);
completion::ModelChoice::ToolCall(
function_call.name.clone(),
"".to_owned(),
args_value,
)
}
_ => {
return Err(CompletionError::ResponseError(
"Unsupported response by the model of type ".into(),
))
}
},
raw_response: response,
}),
_ => Err(CompletionError::ResponseError(
"No candidates found in response".into(),
)),
}
}
}
pub mod gemini_api_types {
use std::collections::HashMap;
// =================================================================
// Gemini API Types
// =================================================================
use serde::{Deserialize, Serialize};
use serde_json::{Map, Value};
use crate::{
completion::CompletionError,
providers::gemini::gemini_api_types::{CodeExecutionResult, ExecutableCode},
};
/// Response from the model supporting multiple candidate responses.
/// Safety ratings and content filtering are reported for both prompt in GenerateContentResponse.prompt_feedback
/// and for each candidate in finishReason and in safetyRatings.
/// The API:
/// - Returns either all requested candidates or none of them
/// - Returns no candidates at all only if there was something wrong with the prompt (check promptFeedback)
/// - Reports feedback on each candidate in finishReason and safetyRatings.
#[derive(Debug, Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct GenerateContentResponse {
/// Candidate responses from the model.
pub candidates: Vec<ContentCandidate>,
/// Returns the prompt's feedback related to the content filters.
pub prompt_feedback: Option<PromptFeedback>,
/// Output only. Metadata on the generation requests' token usage.
pub usage_metadata: Option<UsageMetadata>,
pub model_version: Option<String>,
}
/// A response candidate generated from the model.
#[derive(Debug, Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct ContentCandidate {
/// Output only. Generated content returned from the model.
pub content: Content,
/// Optional. Output only. The reason why the model stopped generating tokens.
/// If empty, the model has not stopped generating tokens.
pub finish_reason: Option<FinishReason>,
/// List of ratings for the safety of a response candidate.
/// There is at most one rating per category.
pub safety_ratings: Option<Vec<SafetyRating>>,
/// Output only. Citation information for model-generated candidate.
/// This field may be populated with recitation information for any text included in the content.
/// These are passages that are "recited" from copyrighted material in the foundational LLM's training data.
pub citation_metadata: Option<CitationMetadata>,
/// Output only. Token count for this candidate.
pub token_count: Option<i32>,
/// Output only.
pub avg_logprobs: Option<f64>,
/// Output only. Log-likelihood scores for the response tokens and top tokens
pub logprobs_result: Option<LogprobsResult>,
/// Output only. Index of the candidate in the list of response candidates.
pub index: Option<i32>,
}
#[derive(Debug, Deserialize, Serialize)]
pub struct Content {
/// Ordered Parts that constitute a single message. Parts may have different MIME types.
pub parts: Vec<Part>,
/// The producer of the content. Must be either 'user' or 'model'.
/// Useful to set for multi-turn conversations, otherwise can be left blank or unset.
pub role: Option<Role>,
}
#[derive(Debug, Deserialize, Serialize)]
#[serde(rename_all = "lowercase")]
pub enum Role {
User,
Model,
}
/// A datatype containing media that is part of a multi-part [Content] message.
/// A Part consists of data which has an associated datatype. A Part can only contain one of the accepted types in Part.data.
/// A Part must have a fixed IANA MIME type identifying the type and subtype of the media if the inlineData field is filled with raw bytes.
#[derive(Debug, Default, Deserialize, Serialize)]
#[serde(rename_all = "camelCase")]
pub struct Part {
#[serde(skip_serializing_if = "Option::is_none")]
pub text: Option<String>,
#[serde(skip_serializing_if = "Option::is_none")]
pub inline_data: Option<Blob>,
#[serde(skip_serializing_if = "Option::is_none")]
pub function_call: Option<FunctionCall>,
#[serde(skip_serializing_if = "Option::is_none")]
pub function_response: Option<FunctionResponse>,
#[serde(skip_serializing_if = "Option::is_none")]
pub file_data: Option<FileData>,
#[serde(skip_serializing_if = "Option::is_none")]
pub executable_code: Option<ExecutableCode>,
#[serde(skip_serializing_if = "Option::is_none")]
pub code_execution_result: Option<CodeExecutionResult>,
}
/// Raw media bytes.
/// Text should not be sent as raw bytes, use the 'text' field.
#[derive(Debug, Deserialize, Serialize)]
#[serde(rename_all = "camelCase")]
pub struct Blob {
/// The IANA standard MIME type of the source data. Examples: - image/png - image/jpeg
/// If an unsupported MIME type is provided, an error will be returned.
pub mime_type: String,
/// Raw bytes for media formats. A base64-encoded string.
pub data: String,
}
/// A predicted FunctionCall returned from the model that contains a string representing the
/// FunctionDeclaration.name with the arguments and their values.
/// #[derive(Debug, Deserialize, Serialize)]
#[derive(Debug, Deserialize, Serialize)]
pub struct FunctionCall {
/// Required. The name of the function to call. Must be a-z, A-Z, 0-9, or contain underscores
/// and dashes, with a maximum length of 63.
pub name: String,
/// Optional. The function parameters and values in JSON object format.
pub args: Option<Map<String, Value>>,
}
/// The result output from a FunctionCall that contains a string representing the FunctionDeclaration.name
/// and a structured JSON object containing any output from the function is used as context to the model.
/// This should contain the result of aFunctionCall made based on model prediction.
#[derive(Debug, Deserialize, Serialize)]
pub struct FunctionResponse {
/// The name of the function to call. Must be a-z, A-Z, 0-9, or contain underscores and dashes,
/// with a maximum length of 63.
pub name: String,
/// The function response in JSON object format.
pub response: Option<HashMap<String, Value>>,
}
/// URI based data.
#[derive(Debug, Deserialize, Serialize)]
#[serde(rename_all = "camelCase")]
pub struct FileData {
/// Optional. The IANA standard MIME type of the source data.
pub mime_type: Option<String>,
/// Required. URI.
pub file_uri: String,
}
#[derive(Debug, Deserialize, Serialize)]
pub struct SafetyRating {
pub category: HarmCategory,
pub probability: HarmProbability,
}
#[derive(Debug, Deserialize, Serialize)]
#[serde(rename_all = "SCREAMING_SNAKE_CASE")]
pub enum HarmProbability {
HarmProbabilityUnspecified,
Negligible,
Low,
Medium,
High,
}
#[derive(Debug, Deserialize, Serialize)]
#[serde(rename_all = "SCREAMING_SNAKE_CASE")]
pub enum HarmCategory {
HarmCategoryUnspecified,
HarmCategoryDerogatory,
HarmCategoryToxicity,
HarmCategoryViolence,
HarmCategorySexually,
HarmCategoryMedical,
HarmCategoryDangerous,
HarmCategoryHarassment,
HarmCategoryHateSpeech,
HarmCategorySexuallyExplicit,
HarmCategoryDangerousContent,
HarmCategoryCivicIntegrity,
}
#[derive(Debug, Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct UsageMetadata {
pub prompt_token_count: i32,
pub cached_content_token_count: Option<i32>,
pub candidates_token_count: i32,
pub total_token_count: i32,
}
impl std::fmt::Display for UsageMetadata {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"Prompt token count: {}\nCached content token count: {}\nCandidates token count: {}\nTotal token count: {}",
self.prompt_token_count,
match self.cached_content_token_count {
Some(count) => count.to_string(),
None => "n/a".to_string(),
},
self.candidates_token_count,
self.total_token_count
)
}
}
/// A set of the feedback metadata the prompt specified in [GenerateContentRequest.contents](GenerateContentRequest).
#[derive(Debug, Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct PromptFeedback {
/// Optional. If set, the prompt was blocked and no candidates are returned. Rephrase the prompt.
pub block_reason: Option<BlockReason>,
/// Ratings for safety of the prompt. There is at most one rating per category.
pub safety_ratings: Option<Vec<SafetyRating>>,
}
/// Reason why a prompt was blocked by the model
#[derive(Debug, Deserialize)]
#[serde(rename_all = "SCREAMING_SNAKE_CASE")]
pub enum BlockReason {
/// Default value. This value is unused.
BlockReasonUnspecified,
/// Prompt was blocked due to safety reasons. Inspect safetyRatings to understand which safety category blocked it.
Safety,
/// Prompt was blocked due to unknown reasons.
Other,
/// Prompt was blocked due to the terms which are included from the terminology blocklist.
Blocklist,
/// Prompt was blocked due to prohibited content.
ProhibitedContent,
}
#[derive(Debug, Deserialize)]
#[serde(rename_all = "SCREAMING_SNAKE_CASE")]
pub enum FinishReason {
/// Default value. This value is unused.
FinishReasonUnspecified,
/// Natural stop point of the model or provided stop sequence.
Stop,
/// The maximum number of tokens as specified in the request was reached.
MaxTokens,
/// The response candidate content was flagged for safety reasons.
Safety,
/// The response candidate content was flagged for recitation reasons.
Recitation,
/// The response candidate content was flagged for using an unsupported language.
Language,
/// Unknown reason.
Other,
/// Token generation stopped because the content contains forbidden terms.
Blocklist,
/// Token generation stopped for potentially containing prohibited content.
ProhibitedContent,
/// Token generation stopped because the content potentially contains Sensitive Personally Identifiable Information (SPII).
Spii,
/// The function call generated by the model is invalid.
MalformedFunctionCall,
}
#[derive(Debug, Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct CitationMetadata {
pub citation_sources: Vec<CitationSource>,
}
#[derive(Debug, Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct CitationSource {
pub uri: Option<String>,
pub start_index: Option<i32>,
pub end_index: Option<i32>,
pub license: Option<String>,
}
#[derive(Debug, Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct LogprobsResult {
pub top_candidate: Vec<TopCandidate>,
pub chosen_candidate: Vec<LogProbCandidate>,
}
#[derive(Debug, Deserialize)]
pub struct TopCandidate {
pub candidates: Vec<LogProbCandidate>,
}
#[derive(Debug, Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct LogProbCandidate {
pub token: String,
pub token_id: String,
pub log_probability: f64,
}
/// Gemini API Configuration options for model generation and outputs. Not all parameters are
/// configurable for every model. From [Gemini API Reference](https://ai.google.dev/api/generate-content#generationconfig)
/// ### Rig Note:
/// Can be used to cosntruct a typesafe `additional_params` in rig::[AgentBuilder](crate::agent::AgentBuilder).
#[derive(Debug, Deserialize, Serialize)]
#[serde(rename_all = "camelCase")]
pub struct GenerationConfig {
/// The set of character sequences (up to 5) that will stop output generation. If specified, the API will stop
/// at the first appearance of a stop_sequence. The stop sequence will not be included as part of the response.
pub stop_sequences: Option<Vec<String>>,
/// MIME type of the generated candidate text. Supported MIME types are:
/// - text/plain: (default) Text output
/// - application/json: JSON response in the response candidates.
/// - text/x.enum: ENUM as a string response in the response candidates.
/// Refer to the docs for a list of all supported text MIME types
pub response_mime_type: Option<String>,
/// Output schema of the generated candidate text. Schemas must be a subset of the OpenAPI schema and can be
/// objects, primitives or arrays. If set, a compatible responseMimeType must also be set. Compatible MIME
/// types: application/json: Schema for JSON response. Refer to the JSON text generation guide for more details.
pub response_schema: Option<Schema>,
/// Number of generated responses to return. Currently, this value can only be set to 1. If
/// unset, this will default to 1.
pub candidate_count: Option<i32>,
/// The maximum number of tokens to include in a response candidate. Note: The default value varies by model, see
/// the Model.output_token_limit attribute of the Model returned from the getModel function.
pub max_output_tokens: Option<u64>,
/// Controls the randomness of the output. Note: The default value varies by model, see the Model.temperature
/// attribute of the Model returned from the getModel function. Values can range from [0.0, 2.0].
pub temperature: Option<f64>,
/// The maximum cumulative probability of tokens to consider when sampling. The model uses combined Top-k and
/// Top-p (nucleus) sampling. Tokens are sorted based on their assigned probabilities so that only the most
/// likely tokens are considered. Top-k sampling directly limits the maximum number of tokens to consider, while
/// Nucleus sampling limits the number of tokens based on the cumulative probability. Note: The default value
/// varies by Model and is specified by theModel.top_p attribute returned from the getModel function. An empty
/// topK attribute indicates that the model doesn't apply top-k sampling and doesn't allow setting topK on requests.
pub top_p: Option<f64>,
/// The maximum number of tokens to consider when sampling. Gemini models use Top-p (nucleus) sampling or a
/// combination of Top-k and nucleus sampling. Top-k sampling considers the set of topK most probable tokens.
/// Models running with nucleus sampling don't allow topK setting. Note: The default value varies by Model and is
/// specified by theModel.top_p attribute returned from the getModel function. An empty topK attribute indicates
/// that the model doesn't apply top-k sampling and doesn't allow setting topK on requests.
pub top_k: Option<i32>,
/// Presence penalty applied to the next token's logprobs if the token has already been seen in the response.
/// This penalty is binary on/off and not dependant on the number of times the token is used (after the first).
/// Use frequencyPenalty for a penalty that increases with each use. A positive penalty will discourage the use
/// of tokens that have already been used in the response, increasing the vocabulary. A negative penalty will
/// encourage the use of tokens that have already been used in the response, decreasing the vocabulary.
pub presence_penalty: Option<f64>,
/// Frequency penalty applied to the next token's logprobs, multiplied by the number of times each token has been
/// seen in the response so far. A positive penalty will discourage the use of tokens that have already been
/// used, proportional to the number of times the token has been used: The more a token is used, the more
/// difficult it is for the model to use that token again increasing the vocabulary of responses. Caution: A
/// negative penalty will encourage the model to reuse tokens proportional to the number of times the token has
/// been used. Small negative values will reduce the vocabulary of a response. Larger negative values will cause
/// the model to repeating a common token until it hits the maxOutputTokens limit: "...the the the the the...".
pub frequency_penalty: Option<f64>,
/// If true, export the logprobs results in response.
pub response_logprobs: Option<bool>,
/// Only valid if responseLogprobs=True. This sets the number of top logprobs to return at each decoding step in
/// [Candidate.logprobs_result].
pub logprobs: Option<i32>,
}
impl Default for GenerationConfig {
fn default() -> Self {
Self {
temperature: Some(1.0),
max_output_tokens: Some(4096),
stop_sequences: None,
response_mime_type: None,
response_schema: None,
candidate_count: None,
top_p: None,
top_k: None,
presence_penalty: None,
frequency_penalty: None,
response_logprobs: None,
logprobs: None,
}
}
}
/// The Schema object allows the definition of input and output data types. These types can be objects, but also
/// primitives and arrays. Represents a select subset of an OpenAPI 3.0 schema object.
/// From [Gemini API Reference](https://ai.google.dev/api/caching#Schema)
#[derive(Debug, Deserialize, Serialize)]
pub struct Schema {
pub r#type: String,
pub format: Option<String>,
pub description: Option<String>,
pub nullable: Option<bool>,
pub r#enum: Option<Vec<String>>,
pub max_items: Option<i32>,
pub min_items: Option<i32>,
pub properties: Option<HashMap<String, Schema>>,
pub required: Option<Vec<String>>,
pub items: Option<Box<Schema>>,
}
impl TryFrom<Value> for Schema {
type Error = CompletionError;
fn try_from(value: Value) -> Result<Self, Self::Error> {
if let Some(obj) = value.as_object() {
Ok(Schema {
r#type: obj
.get("type")
.and_then(|v| v.as_str())
.unwrap_or_default()
.to_string(),
format: obj.get("format").and_then(|v| v.as_str()).map(String::from),
description: obj
.get("description")
.and_then(|v| v.as_str())
.map(String::from),
nullable: obj.get("nullable").and_then(|v| v.as_bool()),
r#enum: obj.get("enum").and_then(|v| v.as_array()).map(|arr| {
arr.iter()
.filter_map(|v| v.as_str().map(String::from))
.collect()
}),
max_items: obj
.get("maxItems")
.and_then(|v| v.as_i64())
.map(|v| v as i32),
min_items: obj
.get("minItems")
.and_then(|v| v.as_i64())
.map(|v| v as i32),
properties: obj
.get("properties")
.and_then(|v| v.as_object())
.map(|map| {
map.iter()
.filter_map(|(k, v)| {
v.clone().try_into().ok().map(|schema| (k.clone(), schema))
})
.collect()
}),
required: obj.get("required").and_then(|v| v.as_array()).map(|arr| {
arr.iter()
.filter_map(|v| v.as_str().map(String::from))
.collect()
}),
items: obj
.get("items")
.map(|v| Box::new(v.clone().try_into().unwrap())),
})
} else {
Err(CompletionError::ResponseError(
"Expected a JSON object for Schema".into(),
))
}
}
}
#[derive(Debug, Serialize)]
#[serde(rename_all = "camelCase")]
pub struct GenerateContentRequest {
pub contents: Vec<Content>,
pub tools: Option<Vec<Tool>>,
pub tool_config: Option<ToolConfig>,
/// Optional. Configuration options for model generation and outputs.
pub generation_config: Option<GenerationConfig>,
/// Optional. A list of unique SafetySetting instances for blocking unsafe content. This will be enforced on the
/// [GenerateContentRequest.contents] and [GenerateContentResponse.candidates]. There should not be more than one
/// setting for each SafetyCategory type. The API will block any contents and responses that fail to meet the
/// thresholds set by these settings. This list overrides the default settings for each SafetyCategory specified
/// in the safetySettings. If there is no SafetySetting for a given SafetyCategory provided in the list, the API
/// will use the default safety setting for that category. Harm categories:
/// - HARM_CATEGORY_HATE_SPEECH,
/// - HARM_CATEGORY_SEXUALLY_EXPLICIT
/// - HARM_CATEGORY_DANGEROUS_CONTENT
/// - HARM_CATEGORY_HARASSMENT
/// are supported.
/// Refer to the guide for detailed information on available safety settings. Also refer to the Safety guidance
/// to learn how to incorporate safety considerations in your AI applications.
pub safety_settings: Option<Vec<SafetySetting>>,
/// Optional. Developer set system instruction(s). Currently, text only.
/// From [Gemini API Reference](https://ai.google.dev/gemini-api/docs/system-instructions?lang=rest)
pub system_instruction: Option<Content>,
// cachedContent: Optional<String>
}
#[derive(Debug, Serialize)]
#[serde(rename_all = "camelCase")]
pub struct Tool {
pub function_declaration: FunctionDeclaration,
pub code_execution: Option<CodeExecution>,
}
#[derive(Debug, Serialize)]
#[serde(rename_all = "camelCase")]
pub struct FunctionDeclaration {
pub name: String,
pub description: String,
pub parameters: Option<Vec<Schema>>,
}
#[derive(Debug, Serialize)]
#[serde(rename_all = "camelCase")]
pub struct ToolConfig {
pub schema: Option<Schema>,
}
#[derive(Debug, Serialize)]
#[serde(rename_all = "camelCase")]
pub struct CodeExecution {}
#[derive(Debug, Serialize)]
#[serde(rename_all = "camelCase")]
pub struct SafetySetting {
pub category: HarmCategory,
pub threshold: HarmBlockThreshold,
}
#[derive(Debug, Serialize)]
#[serde(rename_all = "SCREAMING_SNAKE_CASE")]
pub enum HarmBlockThreshold {
HarmBlockThresholdUnspecified,
BlockLowAndAbove,
BlockMediumAndAbove,
BlockOnlyHigh,
BlockNone,
Off,
}
}