rig/pipeline/
try_op.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
use std::future::Future;

use futures::stream;
#[allow(unused_imports)] // Needed since this is used in a macro rule
use futures::try_join;

use super::op::{self};

// ================================================================
// Core TryOp trait
// ================================================================
pub trait TryOp: Send + Sync {
    type Input: Send + Sync;
    type Output: Send + Sync;
    type Error: Send + Sync;

    /// Execute the current op with the given input.
    fn try_call(
        &self,
        input: Self::Input,
    ) -> impl Future<Output = Result<Self::Output, Self::Error>> + Send;

    /// Execute the current op with the given inputs. `n` is the number of concurrent
    /// inputs that will be processed concurrently.
    /// If the op fails for one of the inputs, the entire operation will fail and the error will
    /// be returned.
    ///
    /// # Example
    /// ```rust
    /// use rig::pipeline::{self, TryOp};
    ///
    /// let op = pipeline::new()
    ///    .map(|x: i32| if x % 2 == 0 { Ok(x + 1) } else { Err("x is odd") });
    ///
    /// // Execute the pipeline concurrently with 2 inputs
    /// let result = op.try_batch_call(2, vec![2, 4]).await;
    /// assert_eq!(result, Ok(vec![3, 5]));
    /// ```
    fn try_batch_call<I>(
        &self,
        n: usize,
        input: I,
    ) -> impl Future<Output = Result<Vec<Self::Output>, Self::Error>> + Send
    where
        I: IntoIterator<Item = Self::Input> + Send,
        I::IntoIter: Send,
        Self: Sized,
    {
        use stream::{StreamExt, TryStreamExt};

        async move {
            stream::iter(input)
                .map(|input| self.try_call(input))
                .buffered(n)
                .try_collect()
                .await
        }
    }

    /// Map the success return value (i.e., `Ok`) of the current op to a different value
    /// using the provided closure.
    ///
    /// # Example
    /// ```rust
    /// use rig::pipeline::{self, TryOp};
    ///
    /// let op = pipeline::new()
    ///     .map(|x: i32| if x % 2 == 0 { Ok(x) } else { Err("x is odd") })
    ///     .map_ok(|x| x * 2);
    ///
    /// let result = op.try_call(2).await;
    /// assert_eq!(result, Ok(4));
    /// ```
    fn map_ok<F, Output>(self, f: F) -> MapOk<Self, op::Map<F, Self::Output>>
    where
        F: Fn(Self::Output) -> Output + Send + Sync,
        Output: Send + Sync,
        Self: Sized,
    {
        MapOk::new(self, op::Map::new(f))
    }

    /// Map the error return value (i.e., `Err`) of the current op to a different value
    /// using the provided closure.
    ///
    /// # Example
    /// ```rust
    /// use rig::pipeline::{self, TryOp};
    ///
    /// let op = pipeline::new()
    ///     .map(|x: i32| if x % 2 == 0 { Ok(x) } else { Err("x is odd") })
    ///     .map_err(|err| format!("Error: {}", err));
    ///
    /// let result = op.try_call(1).await;
    /// assert_eq!(result, Err("Error: x is odd".to_string()));
    /// ```
    fn map_err<F, E>(self, f: F) -> MapErr<Self, op::Map<F, Self::Error>>
    where
        F: Fn(Self::Error) -> E + Send + Sync,
        E: Send + Sync,
        Self: Sized,
    {
        MapErr::new(self, op::Map::new(f))
    }

    /// Chain a function to the current op. The function will only be called
    /// if the current op returns `Ok`. The function must return a `Future` with value
    /// `Result<T, E>` where `E` is the same type as the error type of the current.
    ///
    /// # Example
    /// ```rust
    /// use rig::pipeline::{self, TryOp};
    ///
    /// let op = pipeline::new()
    ///     .map(|x: i32| if x % 2 == 0 { Ok(x) } else { Err("x is odd") })
    ///     .and_then(|x| async move { Ok(x * 2) });
    ///
    /// let result = op.try_call(2).await;
    /// assert_eq!(result, Ok(4));
    /// ```
    fn and_then<F, Fut, Output>(self, f: F) -> AndThen<Self, op::Then<F, Self::Output>>
    where
        F: Fn(Self::Output) -> Fut + Send + Sync,
        Fut: Future<Output = Result<Output, Self::Error>> + Send + Sync,
        Output: Send + Sync,
        Self: Sized,
    {
        AndThen::new(self, op::Then::new(f))
    }

    /// Chain a function `f` to the current op. The function `f` will only be called
    /// if the current op returns `Err`. `f` must return a `Future` with value
    /// `Result<T, E>` where `T` is the same type as the output type of the current op.
    ///
    /// # Example
    /// ```rust
    /// use rig::pipeline::{self, TryOp};
    ///
    /// let op = pipeline::new()
    ///     .map(|x: i32| if x % 2 == 0 { Ok(x) } else { Err("x is odd") })
    ///     .or_else(|err| async move { Err(format!("Error: {}", err)) });
    ///
    /// let result = op.try_call(1).await;
    /// assert_eq!(result, Err("Error: x is odd".to_string()));
    /// ```
    fn or_else<F, Fut, E>(self, f: F) -> OrElse<Self, op::Then<F, Self::Error>>
    where
        F: Fn(Self::Error) -> Fut + Send + Sync,
        Fut: Future<Output = Result<Self::Output, E>> + Send + Sync,
        E: Send + Sync,
        Self: Sized,
    {
        OrElse::new(self, op::Then::new(f))
    }

    /// Chain a new op `op` to the current op. The new op will be called with the success
    /// return value of the current op (i.e.: `Ok` value). The chained op can be any type that
    /// implements the `Op` trait.
    ///
    /// # Example
    /// ```rust
    /// use rig::pipeline::{self, TryOp};
    ///
    /// struct AddOne;
    ///
    /// impl Op for AddOne {
    ///     type Input = i32;
    ///     type Output = i32;
    ///
    ///     async fn call(&self, input: Self::Input) -> Self::Output {
    ///         input + 1
    ///     }
    /// }
    ///
    /// let op = pipeline::new()
    ///     .map(|x: i32| if x % 2 == 0 { Ok(x) } else { Err("x is odd") })
    ///     .chain_ok(MyOp);
    ///
    /// let result = op.try_call(2).await;
    /// assert_eq!(result, Ok(3));
    /// ```
    fn chain_ok<T>(self, op: T) -> TrySequential<Self, T>
    where
        T: op::Op<Input = Self::Output>,
        Self: Sized,
    {
        TrySequential::new(self, op)
    }
}

impl<Op, T, E> TryOp for Op
where
    Op: super::Op<Output = Result<T, E>>,
    T: Send + Sync,
    E: Send + Sync,
{
    type Input = Op::Input;
    type Output = T;
    type Error = E;

    async fn try_call(&self, input: Self::Input) -> Result<Self::Output, Self::Error> {
        self.call(input).await
    }
}

// ================================================================
// TryOp combinators
// ================================================================
pub struct MapOk<Op1, Op2> {
    prev: Op1,
    op: Op2,
}

impl<Op1, Op2> MapOk<Op1, Op2> {
    pub(crate) fn new(prev: Op1, op: Op2) -> Self {
        Self { prev, op }
    }
}

impl<Op1, Op2> op::Op for MapOk<Op1, Op2>
where
    Op1: TryOp,
    Op2: super::Op<Input = Op1::Output>,
{
    type Input = Op1::Input;
    type Output = Result<Op2::Output, Op1::Error>;

    #[inline]
    async fn call(&self, input: Self::Input) -> Self::Output {
        match self.prev.try_call(input).await {
            Ok(output) => Ok(self.op.call(output).await),
            Err(err) => Err(err),
        }
    }
}

pub struct MapErr<Op1, Op2> {
    prev: Op1,
    op: Op2,
}

impl<Op1, Op2> MapErr<Op1, Op2> {
    pub(crate) fn new(prev: Op1, op: Op2) -> Self {
        Self { prev, op }
    }
}

// Result<T, E1> -> Result<T, E2>
impl<Op1, Op2> op::Op for MapErr<Op1, Op2>
where
    Op1: TryOp,
    Op2: super::Op<Input = Op1::Error>,
{
    type Input = Op1::Input;
    type Output = Result<Op1::Output, Op2::Output>;

    #[inline]
    async fn call(&self, input: Self::Input) -> Self::Output {
        match self.prev.try_call(input).await {
            Ok(output) => Ok(output),
            Err(err) => Err(self.op.call(err).await),
        }
    }
}

pub struct AndThen<Op1, Op2> {
    prev: Op1,
    op: Op2,
}

impl<Op1, Op2> AndThen<Op1, Op2> {
    pub(crate) fn new(prev: Op1, op: Op2) -> Self {
        Self { prev, op }
    }
}

impl<Op1, Op2> op::Op for AndThen<Op1, Op2>
where
    Op1: TryOp,
    Op2: TryOp<Input = Op1::Output, Error = Op1::Error>,
{
    type Input = Op1::Input;
    type Output = Result<Op2::Output, Op1::Error>;

    #[inline]
    async fn call(&self, input: Self::Input) -> Self::Output {
        let output = self.prev.try_call(input).await?;
        self.op.try_call(output).await
    }
}

pub struct OrElse<Op1, Op2> {
    prev: Op1,
    op: Op2,
}

impl<Op1, Op2> OrElse<Op1, Op2> {
    pub(crate) fn new(prev: Op1, op: Op2) -> Self {
        Self { prev, op }
    }
}

impl<Op1, Op2> op::Op for OrElse<Op1, Op2>
where
    Op1: TryOp,
    Op2: TryOp<Input = Op1::Error, Output = Op1::Output>,
{
    type Input = Op1::Input;
    type Output = Result<Op1::Output, Op2::Error>;

    #[inline]
    async fn call(&self, input: Self::Input) -> Self::Output {
        match self.prev.try_call(input).await {
            Ok(output) => Ok(output),
            Err(err) => self.op.try_call(err).await,
        }
    }
}

pub struct TrySequential<Op1, Op2> {
    prev: Op1,
    op: Op2,
}

impl<Op1, Op2> TrySequential<Op1, Op2> {
    pub(crate) fn new(prev: Op1, op: Op2) -> Self {
        Self { prev, op }
    }
}

impl<Op1, Op2> op::Op for TrySequential<Op1, Op2>
where
    Op1: TryOp,
    Op2: op::Op<Input = Op1::Output>,
{
    type Input = Op1::Input;
    type Output = Result<Op2::Output, Op1::Error>;

    #[inline]
    async fn call(&self, input: Self::Input) -> Self::Output {
        match self.prev.try_call(input).await {
            Ok(output) => Ok(self.op.call(output).await),
            Err(err) => Err(err),
        }
    }
}

// TODO: Implement TryParallel
// pub struct TryParallel<Op1, Op2> {
//     op1: Op1,
//     op2: Op2,
// }

// impl<Op1, Op2> TryParallel<Op1, Op2> {
//     pub fn new(op1: Op1, op2: Op2) -> Self {
//         Self { op1, op2 }
//     }
// }

// impl<Op1, Op2> TryOp for TryParallel<Op1, Op2>
// where
//     Op1: TryOp,
//     Op2: TryOp<Input = Op1::Input, Output = Op1::Output, Error = Op1::Error>,
// {
//     type Input = Op1::Input;
//     type Output = (Op1::Output, Op2::Output);
//     type Error = Op1::Error;

//     #[inline]
//     async fn try_call(&self, input: Self::Input) -> Result<Self::Output, Self::Error> {
//         let (output1, output2) = tokio::join!(self.op1.try_call(input.clone()), self.op2.try_call(input));
//         Ok((output1?, output2?))
//     }
// }

#[cfg(test)]
mod tests {
    use super::*;
    use crate::pipeline::op::{map, then};

    #[tokio::test]
    async fn test_try_op() {
        let op = map(|x: i32| if x % 2 == 0 { Ok(x) } else { Err("x is odd") });
        let result = op.try_call(2).await.unwrap();
        assert_eq!(result, 2);
    }

    #[tokio::test]
    async fn test_map_ok_constructor() {
        let op1 = map(|x: i32| if x % 2 == 0 { Ok(x) } else { Err("x is odd") });
        let op2 = then(|x: i32| async move { x * 2 });
        let op3 = map(|x: i32| x - 1);

        let pipeline = MapOk::new(MapOk::new(op1, op2), op3);

        let result = pipeline.try_call(2).await.unwrap();
        assert_eq!(result, 3);
    }

    #[tokio::test]
    async fn test_map_ok_chain() {
        let pipeline = map(|x: i32| if x % 2 == 0 { Ok(x) } else { Err("x is odd") })
            .map_ok(|x| x * 2)
            .map_ok(|x| x - 1);

        let result = pipeline.try_call(2).await.unwrap();
        assert_eq!(result, 3);
    }

    #[tokio::test]
    async fn test_map_err_constructor() {
        let op1 = map(|x: i32| if x % 2 == 0 { Ok(x) } else { Err("x is odd") });
        let op2 = then(|err: &str| async move { format!("Error: {}", err) });
        let op3 = map(|err: String| err.len());

        let pipeline = MapErr::new(MapErr::new(op1, op2), op3);

        let result = pipeline.try_call(1).await;
        assert_eq!(result, Err(15));
    }

    #[tokio::test]
    async fn test_map_err_chain() {
        let pipeline = map(|x: i32| if x % 2 == 0 { Ok(x) } else { Err("x is odd") })
            .map_err(|err| format!("Error: {}", err))
            .map_err(|err| err.len());

        let result = pipeline.try_call(1).await;
        assert_eq!(result, Err(15));
    }

    #[tokio::test]
    async fn test_and_then_constructor() {
        let op1 = map(|x: i32| if x % 2 == 0 { Ok(x) } else { Err("x is odd") });
        let op2 = then(|x: i32| async move { Ok(x * 2) });
        let op3 = map(|x: i32| Ok(x - 1));

        let pipeline = AndThen::new(AndThen::new(op1, op2), op3);

        let result = pipeline.try_call(2).await.unwrap();
        assert_eq!(result, 3);
    }

    #[tokio::test]
    async fn test_and_then_chain() {
        let pipeline = map(|x: i32| if x % 2 == 0 { Ok(x) } else { Err("x is odd") })
            .and_then(|x| async move { Ok(x * 2) })
            .and_then(|x| async move { Ok(x - 1) });

        let result = pipeline.try_call(2).await.unwrap();
        assert_eq!(result, 3);
    }

    #[tokio::test]
    async fn test_or_else_constructor() {
        let op1 = map(|x: i32| if x % 2 == 0 { Ok(x) } else { Err("x is odd") });
        let op2 = then(|err: &str| async move { Err(format!("Error: {}", err)) });
        let op3 = map(|err: String| Ok::<i32, String>(err.len() as i32));

        let pipeline = OrElse::new(OrElse::new(op1, op2), op3);

        let result = pipeline.try_call(1).await.unwrap();
        assert_eq!(result, 15);
    }

    #[tokio::test]
    async fn test_or_else_chain() {
        let pipeline = map(|x: i32| if x % 2 == 0 { Ok(x) } else { Err("x is odd") })
            .or_else(|err| async move { Err(format!("Error: {}", err)) })
            .or_else(|err| async move { Ok::<i32, String>(err.len() as i32) });

        let result = pipeline.try_call(1).await.unwrap();
        assert_eq!(result, 15);
    }
}