rig/pipeline/op.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
use std::future::Future;
#[allow(unused_imports)] // Needed since this is used in a macro rule
use futures::join;
use futures::stream;
// ================================================================
// Core Op trait
// ================================================================
pub trait Op: Send + Sync {
type Input: Send + Sync;
type Output: Send + Sync;
fn call(&self, input: Self::Input) -> impl Future<Output = Self::Output> + Send;
/// Execute the current pipeline with the given inputs. `n` is the number of concurrent
/// inputs that will be processed concurrently.
fn batch_call<I>(&self, n: usize, input: I) -> impl Future<Output = Vec<Self::Output>> + Send
where
I: IntoIterator<Item = Self::Input> + Send,
I::IntoIter: Send,
Self: Sized,
{
use futures::stream::StreamExt;
async move {
stream::iter(input)
.map(|input| self.call(input))
.buffered(n)
.collect()
.await
}
}
/// Chain a function `f` to the current op.
///
/// # Example
/// ```rust
/// use rig::pipeline::{self, Op};
///
/// let chain = pipeline::new()
/// .map(|(x, y)| x + y)
/// .map(|z| format!("Result: {z}!"));
///
/// let result = chain.call((1, 2)).await;
/// assert_eq!(result, "Result: 3!");
/// ```
fn map<F, Input>(self, f: F) -> Sequential<Self, Map<F, Self::Output>>
where
F: Fn(Self::Output) -> Input + Send + Sync,
Input: Send + Sync,
Self: Sized,
{
Sequential::new(self, Map::new(f))
}
/// Same as `map` but for asynchronous functions
///
/// # Example
/// ```rust
/// use rig::pipeline::{self, Op};
///
/// let chain = pipeline::new()
/// .then(|email: String| async move {
/// email.split('@').next().unwrap().to_string()
/// })
/// .then(|username: String| async move {
/// format!("Hello, {}!", username)
/// });
///
/// let result = chain.call("bob@gmail.com".to_string()).await;
/// assert_eq!(result, "Hello, bob!");
/// ```
fn then<F, Fut>(self, f: F) -> Sequential<Self, Then<F, Fut::Output>>
where
F: Fn(Self::Output) -> Fut + Send + Sync,
Fut: Future + Send + Sync,
Fut::Output: Send + Sync,
Self: Sized,
{
Sequential::new(self, Then::new(f))
}
/// Chain an arbitrary operation to the current op.
///
/// # Example
/// ```rust
/// use rig::pipeline::{self, Op};
///
/// struct AddOne;
///
/// impl Op for AddOne {
/// type Input = i32;
/// type Output = i32;
///
/// async fn call(&self, input: Self::Input) -> Self::Output {
/// input + 1
/// }
/// }
///
/// let chain = pipeline::new()
/// .chain(AddOne);
///
/// let result = chain.call(1).await;
/// assert_eq!(result, 2);
/// ```
fn chain<T>(self, op: T) -> Sequential<Self, T>
where
T: Op<Input = Self::Output>,
Self: Sized,
{
Sequential::new(self, op)
}
/// Chain a lookup operation to the current chain. The lookup operation expects the
/// current chain to output a query string. The lookup operation will use the query to
/// retrieve the top `n` documents from the index and return them with the query string.
///
/// # Example
/// ```rust
/// use rig::chain::{self, Chain};
///
/// let chain = chain::new()
/// .lookup(index, 2)
/// .chain(|(query, docs): (_, Vec<String>)| async move {
/// format!("User query: {}\n\nTop documents:\n{}", query, docs.join("\n"))
/// });
///
/// let result = chain.call("What is a flurbo?".to_string()).await;
/// ```
fn lookup<I, Input>(
self,
index: I,
n: usize,
) -> Sequential<Self, Lookup<I, Self::Output, Input>>
where
I: vector_store::VectorStoreIndex,
Input: Send + Sync + for<'a> serde::Deserialize<'a>,
Self::Output: Into<String>,
Self: Sized,
{
Sequential::new(self, Lookup::new(index, n))
}
/// Chain a prompt operation to the current chain. The prompt operation expects the
/// current chain to output a string. The prompt operation will use the string to prompt
/// the given agent (or any other type that implements the `Prompt` trait) and return
/// the response.
///
/// # Example
/// ```rust
/// use rig::chain::{self, Chain};
///
/// let agent = &openai_client.agent("gpt-4").build();
///
/// let chain = chain::new()
/// .map(|name| format!("Find funny nicknames for the following name: {name}!"))
/// .prompt(agent);
///
/// let result = chain.call("Alice".to_string()).await;
/// ```
fn prompt<P>(self, prompt: P) -> Sequential<Self, Prompt<P, Self::Output>>
where
P: completion::Prompt,
Self::Output: Into<String>,
Self: Sized,
{
Sequential::new(self, Prompt::new(prompt))
}
}
impl<T: Op> Op for &T {
type Input = T::Input;
type Output = T::Output;
#[inline]
async fn call(&self, input: Self::Input) -> Self::Output {
(*self).call(input).await
}
}
// ================================================================
// Op combinators
// ================================================================
pub struct Sequential<Op1, Op2> {
prev: Op1,
op: Op2,
}
impl<Op1, Op2> Sequential<Op1, Op2> {
pub(crate) fn new(prev: Op1, op: Op2) -> Self {
Self { prev, op }
}
}
impl<Op1, Op2> Op for Sequential<Op1, Op2>
where
Op1: Op,
Op2: Op<Input = Op1::Output>,
{
type Input = Op1::Input;
type Output = Op2::Output;
#[inline]
async fn call(&self, input: Self::Input) -> Self::Output {
let prev = self.prev.call(input).await;
self.op.call(prev).await
}
}
use crate::{completion, vector_store};
use super::agent_ops::{Lookup, Prompt};
// ================================================================
// Core Op implementations
// ================================================================
pub struct Map<F, Input> {
f: F,
_t: std::marker::PhantomData<Input>,
}
impl<F, Input> Map<F, Input> {
pub(crate) fn new(f: F) -> Self {
Self {
f,
_t: std::marker::PhantomData,
}
}
}
impl<F, Input, Output> Op for Map<F, Input>
where
F: Fn(Input) -> Output + Send + Sync,
Input: Send + Sync,
Output: Send + Sync,
{
type Input = Input;
type Output = Output;
#[inline]
async fn call(&self, input: Self::Input) -> Self::Output {
(self.f)(input)
}
}
pub fn map<F, Input, Output>(f: F) -> Map<F, Input>
where
F: Fn(Input) -> Output + Send + Sync,
Input: Send + Sync,
Output: Send + Sync,
{
Map::new(f)
}
pub struct Passthrough<T> {
_t: std::marker::PhantomData<T>,
}
impl<T> Passthrough<T> {
pub(crate) fn new() -> Self {
Self {
_t: std::marker::PhantomData,
}
}
}
impl<T> Op for Passthrough<T>
where
T: Send + Sync,
{
type Input = T;
type Output = T;
async fn call(&self, input: Self::Input) -> Self::Output {
input
}
}
pub fn passthrough<T>() -> Passthrough<T>
where
T: Send + Sync,
{
Passthrough::new()
}
pub struct Then<F, Input> {
f: F,
_t: std::marker::PhantomData<Input>,
}
impl<F, Input> Then<F, Input> {
pub(crate) fn new(f: F) -> Self {
Self {
f,
_t: std::marker::PhantomData,
}
}
}
impl<F, Input, Fut> Op for Then<F, Input>
where
F: Fn(Input) -> Fut + Send + Sync,
Input: Send + Sync,
Fut: Future + Send,
Fut::Output: Send + Sync,
{
type Input = Input;
type Output = Fut::Output;
#[inline]
async fn call(&self, input: Self::Input) -> Self::Output {
(self.f)(input).await
}
}
pub fn then<F, Input, Fut>(f: F) -> Then<F, Input>
where
F: Fn(Input) -> Fut + Send + Sync,
Input: Send + Sync,
Fut: Future + Send,
Fut::Output: Send + Sync,
{
Then::new(f)
}
#[cfg(test)]
mod tests {
use super::*;
#[tokio::test]
async fn test_sequential_constructor() {
let op1 = map(|x: i32| x + 1);
let op2 = map(|x: i32| x * 2);
let op3 = map(|x: i32| x * 3);
let pipeline = Sequential::new(Sequential::new(op1, op2), op3);
let result = pipeline.call(1).await;
assert_eq!(result, 12);
}
#[tokio::test]
async fn test_sequential_chain() {
let pipeline = map(|x: i32| x + 1)
.map(|x| x * 2)
.then(|x| async move { x * 3 });
let result = pipeline.call(1).await;
assert_eq!(result, 12);
}
// #[tokio::test]
// async fn test_flatten() {
// let op = Parallel::new(
// Parallel::new(
// map(|x: i32| x + 1),
// map(|x: i32| x * 2),
// ),
// map(|x: i32| x * 3),
// );
// let pipeline = flatten::<_, (_, _, _)>(op);
// let result = pipeline.call(1).await;
// assert_eq!(result, (2, 2, 3));
// }
// #[tokio::test]
// async fn test_parallel_macro() {
// let op1 = map(|x: i32| x + 1);
// let op2 = map(|x: i32| x * 3);
// let op3 = map(|x: i32| format!("{} is the number!", x));
// let op4 = map(|x: i32| x - 1);
// let pipeline = parallel!(op1, op2, op3, op4);
// let result = pipeline.call(1).await;
// assert_eq!(result, (2, 3, "1 is the number!".to_string(), 0));
// }
// #[tokio::test]
// async fn test_parallel_join() {
// let op3 = map(|x: i32| format!("{} is the number!", x));
// let pipeline = Sequential::new(
// map(|x: i32| x + 1),
// then(|x| {
// // let op1 = map(|x: i32| x * 2);
// // let op2 = map(|x: i32| x * 3);
// let op3 = &op3;
// async move {
// join!(
// (&map(|x: i32| x * 2)).call(x),
// {
// let op = map(|x: i32| x * 3);
// op.call(x)
// },
// op3.call(x),
// )
// }}),
// );
// let result = pipeline.call(1).await;
// assert_eq!(result, (2, 3, "1 is the number!".to_string()));
// }
// #[test]
// fn test_flatten() {
// let x = (1, (2, (3, 4)));
// let result = flatten!(0, 1, 1, 1, 1);
// assert_eq!(result, (1, 2, 3, 4));
// }
}