rig/pipeline/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
//! This module defines a flexible pipeline API for defining a sequence of operations that
//! may or may not use AI components (e.g.: semantic search, LLMs prompting, etc).
//!
//! The pipeline API was inspired by general orchestration pipelines such as Airflow, Dagster and Prefect,
//! but implemented with idiomatic Rust patterns and providing some AI-specific ops out-of-the-box along
//! general combinators.
//!
//! Pipelines are made up of one or more operations, or "ops", each of which must implement the [Op] trait.
//! The [Op] trait requires the implementation of only one method: `call`, which takes an input
//! and returns an output. The trait provides a wide range of combinators for chaining operations together.
//!
//! One can think of a pipeline as a DAG (Directed Acyclic Graph) where each node is an operation and
//! the edges represent the data flow between operations. When invoking the pipeline on some input,
//! the input is passed to the root node of the DAG (i.e.: the first op defined in the pipeline).
//! The output of each op is then passed to the next op in the pipeline until the output reaches the
//! leaf node (i.e.: the last op defined in the pipeline). The output of the leaf node is then returned
//! as the result of the pipeline.
//!
//! ## Basic Example
//! For example, the pipeline below takes a tuple of two integers, adds them together and then formats
//! the result as a string using the [map](Op::map) combinator method, which applies a simple function
//! op to the output of the previous op:
//! ```rust
//! use rig::pipeline::{self, Op};
//!
//! let pipeline = pipeline::new()
//!     // op1: add two numbers
//!     .map(|(x, y)| x + y)
//!     // op2: format result
//!     .map(|z| format!("Result: {z}!"));
//!
//! let result = pipeline.call((1, 2)).await;
//! assert_eq!(result, "Result: 3!");
//! ```
//!
//! This pipeline can be visualized as the following DAG:
//! ```text
//!          ┌─────────┐   ┌─────────┐         
//! Input───►│   op1   ├──►│   op2   ├──►Output
//!          └─────────┘   └─────────┘         
//! ```
//!
//! ## Parallel Operations
//! The pipeline API also provides a [parallel!](crate::parallel!) and macro for running operations in parallel.
//! The macro takes a list of ops and turns them into a single op that will duplicate the input
//! and run each op in concurrently. The results of each op are then collected and returned as a tuple.
//!
//! For example, the pipeline below runs two operations concurrently:
//! ```rust
//! use rig::{pipeline::{self, Op, map}, parallel};
//!
//! let pipeline = pipeline::new()
//!     .chain(parallel!(
//!         // op1: add 1 to input
//!         map(|x| x + 1),
//!         // op2: subtract 1 from input
//!         map(|x| x - 1),
//!     ))
//!     // op3: format results
//!     .map(|(a, b)| format!("Results: {a}, {b}"));
//!
//! let result = pipeline.call(1).await;
//! assert_eq!(result, "Result: 2, 0");
//! ```
//!
//! Notes:
//! - The [chain](Op::chain) method is similar to the [map](Op::map) method but it allows
//!   for chaining arbitrary operations, as long as they implement the [Op] trait.
//! - [map] is a function that initializes a standalone [Map](self::op::Map) op without an existing pipeline/op.
//!
//! The pipeline above can be visualized as the following DAG:
//! ```text                 
//!           Input            
//!             │              
//!      ┌──────┴──────┐       
//!      ▼             ▼       
//! ┌─────────┐   ┌─────────┐  
//! │   op1   │   │   op2   │  
//! └────┬────┘   └────┬────┘  
//!      └──────┬──────┘       
//!             ▼              
//!        ┌─────────┐         
//!        │   op3   │         
//!        └────┬────┘         
//!             │              
//!             ▼              
//!          Output           
//! ```

pub mod agent_ops;
pub mod op;
pub mod try_op;
#[macro_use]
pub mod parallel;
#[macro_use]
pub mod conditional;

use std::future::Future;

pub use op::{map, passthrough, then, Op};
pub use try_op::TryOp;

use crate::{completion, extractor::Extractor, vector_store};

pub struct PipelineBuilder<E> {
    _error: std::marker::PhantomData<E>,
}

impl<E> PipelineBuilder<E> {
    /// Add a function to the current pipeline
    ///
    /// # Example
    /// ```rust
    /// use rig::pipeline::{self, Op};
    ///
    /// let pipeline = pipeline::new()
    ///    .map(|(x, y)| x + y)
    ///    .map(|z| format!("Result: {z}!"));
    ///
    /// let result = pipeline.call((1, 2)).await;
    /// assert_eq!(result, "Result: 3!");
    /// ```
    pub fn map<F, Input, Output>(self, f: F) -> op::Map<F, Input>
    where
        F: Fn(Input) -> Output + Send + Sync,
        Input: Send + Sync,
        Output: Send + Sync,
        Self: Sized,
    {
        op::Map::new(f)
    }

    /// Same as `map` but for asynchronous functions
    ///
    /// # Example
    /// ```rust
    /// use rig::pipeline::{self, Op};
    ///
    /// let pipeline = pipeline::new()
    ///     .then(|email: String| async move {
    ///         email.split('@').next().unwrap().to_string()
    ///     })
    ///     .then(|username: String| async move {
    ///         format!("Hello, {}!", username)
    ///     });
    ///
    /// let result = pipeline.call("bob@gmail.com".to_string()).await;
    /// assert_eq!(result, "Hello, bob!");
    /// ```
    pub fn then<F, Input, Fut>(self, f: F) -> op::Then<F, Input>
    where
        F: Fn(Input) -> Fut + Send + Sync,
        Input: Send + Sync,
        Fut: Future + Send + Sync,
        Fut::Output: Send + Sync,
        Self: Sized,
    {
        op::Then::new(f)
    }

    /// Add an arbitrary operation to the current pipeline.
    ///
    /// # Example
    /// ```rust
    /// use rig::pipeline::{self, Op};
    ///
    /// struct MyOp;
    ///
    /// impl Op for MyOp {
    ///     type Input = i32;
    ///     type Output = i32;
    ///
    ///     async fn call(&self, input: Self::Input) -> Self::Output {
    ///         input + 1
    ///     }
    /// }
    ///
    /// let pipeline = pipeline::new()
    ///    .chain(MyOp);
    ///
    /// let result = pipeline.call(1).await;
    /// assert_eq!(result, 2);
    /// ```
    pub fn chain<T>(self, op: T) -> T
    where
        T: Op,
        Self: Sized,
    {
        op
    }

    /// Chain a lookup operation to the current chain. The lookup operation expects the
    /// current chain to output a query string. The lookup operation will use the query to
    /// retrieve the top `n` documents from the index and return them with the query string.
    ///
    /// # Example
    /// ```rust
    /// use rig::pipeline::{self, Op};
    ///
    /// let pipeline = pipeline::new()
    ///     .lookup(index, 2)
    ///     .pipeline(|(query, docs): (_, Vec<String>)| async move {
    ///         format!("User query: {}\n\nTop documents:\n{}", query, docs.join("\n"))
    ///     });
    ///
    /// let result = pipeline.call("What is a flurbo?".to_string()).await;
    /// ```
    pub fn lookup<I, Input, Output>(self, index: I, n: usize) -> agent_ops::Lookup<I, Input, Output>
    where
        I: vector_store::VectorStoreIndex,
        Output: Send + Sync + for<'a> serde::Deserialize<'a>,
        Input: Into<String> + Send + Sync,
        // E: From<vector_store::VectorStoreError> + Send + Sync,
        Self: Sized,
    {
        agent_ops::Lookup::new(index, n)
    }

    /// Add a prompt operation to the current pipeline/op. The prompt operation expects the
    /// current pipeline to output a string. The prompt operation will use the string to prompt
    /// the given `agent`, which must implements the [Prompt](completion::Prompt) trait and return
    /// the response.
    ///
    /// # Example
    /// ```rust
    /// use rig::pipeline::{self, Op};
    ///
    /// let agent = &openai_client.agent("gpt-4").build();
    ///
    /// let pipeline = pipeline::new()
    ///    .map(|name| format!("Find funny nicknames for the following name: {name}!"))
    ///    .prompt(agent);
    ///
    /// let result = pipeline.call("Alice".to_string()).await;
    /// ```
    pub fn prompt<P, Input>(self, agent: P) -> agent_ops::Prompt<P, Input>
    where
        P: completion::Prompt,
        Input: Into<String> + Send + Sync,
        // E: From<completion::PromptError> + Send + Sync,
        Self: Sized,
    {
        agent_ops::Prompt::new(agent)
    }

    /// Add an extract operation to the current pipeline/op. The extract operation expects the
    /// current pipeline to output a string. The extract operation will use the given `extractor`
    /// to extract information from the string in the form of the type `T` and return it.
    ///
    /// # Example
    /// ```rust
    /// use rig::pipeline::{self, Op};
    ///
    /// #[derive(Debug, serde::Deserialize, schemars::JsonSchema)]
    /// struct Sentiment {
    ///     /// The sentiment score of the text (0.0 = negative, 1.0 = positive)
    ///     score: f64,
    /// }
    ///
    /// let extractor = &openai_client.extractor::<Sentiment>("gpt-4").build();
    ///
    /// let pipeline = pipeline::new()
    ///     .map(|text| format!("Analyze the sentiment of the following text: {text}!"))
    ///     .extract(extractor);
    ///
    /// let result: Sentiment = pipeline.call("I love ice cream!".to_string()).await?;
    /// assert!(result.score > 0.5);
    /// ```
    pub fn extract<M, Input, Output>(
        self,
        extractor: Extractor<M, Output>,
    ) -> agent_ops::Extract<M, Input, Output>
    where
        M: completion::CompletionModel,
        Output: schemars::JsonSchema + for<'a> serde::Deserialize<'a> + Send + Sync,
        Input: Into<String> + Send + Sync,
    {
        agent_ops::Extract::new(extractor)
    }
}

#[derive(Debug, thiserror::Error)]
pub enum ChainError {
    #[error("Failed to prompt agent: {0}")]
    PromptError(#[from] completion::PromptError),

    #[error("Failed to lookup documents: {0}")]
    LookupError(#[from] vector_store::VectorStoreError),
}

pub fn new() -> PipelineBuilder<ChainError> {
    PipelineBuilder {
        _error: std::marker::PhantomData,
    }
}

pub fn with_error<E>() -> PipelineBuilder<E> {
    PipelineBuilder {
        _error: std::marker::PhantomData,
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use agent_ops::tests::{Foo, MockIndex, MockModel};
    use parallel::parallel;

    #[tokio::test]
    async fn test_prompt_pipeline() {
        let model = MockModel;

        let chain = super::new()
            .map(|input| format!("User query: {}", input))
            .prompt(model);

        let result = chain
            .call("What is a flurbo?")
            .await
            .expect("Failed to run chain");

        assert_eq!(result, "Mock response: User query: What is a flurbo?");
    }

    #[tokio::test]
    async fn test_prompt_pipeline_error() {
        let model = MockModel;

        let chain = super::with_error::<()>()
            .map(|input| format!("User query: {}", input))
            .prompt(model);

        let result = chain
            .try_call("What is a flurbo?")
            .await
            .expect("Failed to run chain");

        assert_eq!(result, "Mock response: User query: What is a flurbo?");
    }

    #[tokio::test]
    async fn test_lookup_pipeline() {
        let index = MockIndex;

        let chain = super::new()
            .lookup::<_, _, Foo>(index, 1)
            .map_ok(|docs| format!("Top documents:\n{}", docs[0].2.foo));

        let result = chain
            .try_call("What is a flurbo?")
            .await
            .expect("Failed to run chain");

        assert_eq!(result, "Top documents:\nbar");
    }

    #[tokio::test]
    async fn test_rag_pipeline() {
        let index = MockIndex;

        let chain = super::new()
            .chain(parallel!(
                passthrough(),
                agent_ops::lookup::<_, _, Foo>(index, 1),
            ))
            .map(|(query, maybe_docs)| match maybe_docs {
                Ok(docs) => format!("User query: {}\n\nTop documents:\n{}", query, docs[0].2.foo),
                Err(err) => format!("Error: {}", err),
            })
            .prompt(MockModel);

        let result = chain
            .call("What is a flurbo?")
            .await
            .expect("Failed to run chain");

        assert_eq!(
            result,
            "Mock response: User query: What is a flurbo?\n\nTop documents:\nbar"
        );
    }
}