rig/
agent.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
//! This module contains the implementation of the [Agent] struct and its builder.
//!
//! The [Agent] struct represents an LLM agent, which combines an LLM model with a preamble (system prompt),
//! a set of context documents, and a set of tools. Note: both context documents and tools can be either
//! static (i.e.: they are always provided) or dynamic (i.e.: they are RAGged at prompt-time).
//!
//! The [Agent] struct is highly configurable, allowing the user to define anything from
//! a simple bot with a specific system prompt to a complex RAG system with a set of dynamic
//! context documents and tools.
//!
//! The [Agent] struct implements the [Completion] and [Prompt] traits, allowing it to be used for generating
//! completions responses and prompts. The [Agent] struct also implements the [Chat] trait, which allows it to
//! be used for generating chat completions.
//!
//! The [AgentBuilder] implements the builder pattern for creating instances of [Agent].
//! It allows configuring the model, preamble, context documents, tools, temperature, and additional parameters
//! before building the agent.
//!
//! # Example
//! ```rust
//! use rig::{
//!     completion::{Chat, Completion, Prompt},
//!     providers::openai,
//! };
//!
//! let openai = openai::Client::from_env();
//!
//! // Configure the agent
//! let agent = openai.agent("gpt-4o")
//!     .preamble("System prompt")
//!     .context("Context document 1")
//!     .context("Context document 2")
//!     .tool(tool1)
//!     .tool(tool2)
//!     .temperature(0.8)
//!     .additional_params(json!({"foo": "bar"}))
//!     .build();
//!
//! // Use the agent for completions and prompts
//! // Generate a chat completion response from a prompt and chat history
//! let chat_response = agent.chat("Prompt", chat_history)
//!     .await
//!     .expect("Failed to chat with Agent");
//!
//! // Generate a prompt completion response from a simple prompt
//! let chat_response = agent.prompt("Prompt")
//!     .await
//!     .expect("Failed to prompt the Agent");
//!
//! // Generate a completion request builder from a prompt and chat history. The builder
//! // will contain the agent's configuration (i.e.: preamble, context documents, tools,
//! // model parameters, etc.), but these can be overwritten.
//! let completion_req_builder = agent.completion("Prompt", chat_history)
//!     .await
//!     .expect("Failed to create completion request builder");
//!
//! let response = completion_req_builder
//!     .temperature(0.9) // Overwrite the agent's temperature
//!     .send()
//!     .await
//!     .expect("Failed to send completion request");
//! ```
//!
//! RAG Agent example
//! ```rust
//! use rig::{
//!     completion::Prompt,
//!     embeddings::EmbeddingsBuilder,
//!     providers::openai,
//!     vector_store::{in_memory_store::InMemoryVectorStore, VectorStore},
//! };
//!
//! // Initialize OpenAI client
//! let openai = openai::Client::from_env();
//!
//! // Initialize OpenAI embedding model
//! let embedding_model = openai.embedding_model(openai::TEXT_EMBEDDING_ADA_002);
//!
//! // Create vector store, compute embeddings and load them in the store
//! let mut vector_store = InMemoryVectorStore::default();
//!
//! let embeddings = EmbeddingsBuilder::new(embedding_model.clone())
//!     .simple_document("doc0", "Definition of a *flurbo*: A flurbo is a green alien that lives on cold planets")
//!     .simple_document("doc1", "Definition of a *glarb-glarb*: A glarb-glarb is a ancient tool used by the ancestors of the inhabitants of planet Jiro to farm the land.")
//!     .simple_document("doc2", "Definition of a *linglingdong*: A term used by inhabitants of the far side of the moon to describe humans.")
//!     .build()
//!     .await
//!     .expect("Failed to build embeddings");
//!
//! vector_store.add_documents(embeddings)
//!     .await
//!     .expect("Failed to add documents");
//!
//! // Create vector store index
//! let index = vector_store.index(embedding_model);
//!
//! let agent = openai.agent(openai::GPT_4O)
//!     .preamble("
//!         You are a dictionary assistant here to assist the user in understanding the meaning of words.
//!         You will find additional non-standard word definitions that could be useful below.
//!     ")
//!     .dynamic_context(1, index)
//!     .build();
//!
//! // Prompt the agent and print the response
//! let response = agent.prompt("What does \"glarb-glarb\" mean?").await
//!     .expect("Failed to prompt the agent");
//! ```
use std::collections::HashMap;

use futures::{stream, StreamExt, TryStreamExt};

use crate::{
    completion::{
        Chat, Completion, CompletionError, CompletionModel, CompletionRequestBuilder,
        CompletionResponse, Document, Message, ModelChoice, Prompt, PromptError,
    },
    tool::{Tool, ToolSet},
    vector_store::{VectorStoreError, VectorStoreIndexDyn},
};

/// Struct representing an LLM agent. An agent is an LLM model combined with a preamble
/// (i.e.: system prompt) and a static set of context documents and tools.
/// All context documents and tools are always provided to the agent when prompted.
///
/// # Example
/// ```
/// use rig::{completion::Prompt, providers::openai};
///
/// let openai = openai::Client::from_env();
///
/// let comedian_agent = openai
///     .agent("gpt-4o")
///     .preamble("You are a comedian here to entertain the user using humour and jokes.")
///     .temperature(0.9)
///     .build();
///
/// let response = comedian_agent.prompt("Entertain me!")
///     .await
///     .expect("Failed to prompt the agent");
/// ```
pub struct Agent<M: CompletionModel> {
    /// Completion model (e.g.: OpenAI's gpt-3.5-turbo-1106, Cohere's command-r)
    model: M,
    /// System prompt
    preamble: String,
    /// Context documents always available to the agent
    static_context: Vec<Document>,
    /// Tools that are always available to the agent (identified by their name)
    static_tools: Vec<String>,
    /// Temperature of the model
    temperature: Option<f64>,
    /// Maximum number of tokens for the completion
    max_tokens: Option<u64>,
    /// Additional parameters to be passed to the model
    additional_params: Option<serde_json::Value>,
    /// List of vector store, with the sample number
    dynamic_context: Vec<(usize, Box<dyn VectorStoreIndexDyn>)>,
    /// Dynamic tools
    dynamic_tools: Vec<(usize, Box<dyn VectorStoreIndexDyn>)>,
    /// Actual tool implementations
    pub tools: ToolSet,
}

impl<M: CompletionModel> Completion<M> for Agent<M> {
    async fn completion(
        &self,
        prompt: &str,
        chat_history: Vec<Message>,
    ) -> Result<CompletionRequestBuilder<M>, CompletionError> {
        let dynamic_context = stream::iter(self.dynamic_context.iter())
            .then(|(num_sample, index)| async {
                Ok::<_, VectorStoreError>(
                    index
                        .top_n(prompt, *num_sample)
                        .await?
                        .into_iter()
                        .map(|(_, id, doc)| {
                            // Pretty print the document if possible for better readability
                            let text = serde_json::to_string_pretty(&doc)
                                .unwrap_or_else(|_| doc.to_string());

                            Document {
                                id,
                                text,
                                additional_props: HashMap::new(),
                            }
                        })
                        .collect::<Vec<_>>(),
                )
            })
            .try_fold(vec![], |mut acc, docs| async {
                acc.extend(docs);
                Ok(acc)
            })
            .await
            .map_err(|e| CompletionError::RequestError(Box::new(e)))?;

        let dynamic_tools = stream::iter(self.dynamic_tools.iter())
            .then(|(num_sample, index)| async {
                Ok::<_, VectorStoreError>(
                    index
                        .top_n_ids(prompt, *num_sample)
                        .await?
                        .into_iter()
                        .map(|(_, id)| id)
                        .collect::<Vec<_>>(),
                )
            })
            .try_fold(vec![], |mut acc, docs| async {
                for doc in docs {
                    if let Some(tool) = self.tools.get(&doc) {
                        acc.push(tool.definition(prompt.into()).await)
                    } else {
                        tracing::warn!("Tool implementation not found in toolset: {}", doc);
                    }
                }
                Ok(acc)
            })
            .await
            .map_err(|e| CompletionError::RequestError(Box::new(e)))?;

        let static_tools = stream::iter(self.static_tools.iter())
            .filter_map(|toolname| async move {
                if let Some(tool) = self.tools.get(toolname) {
                    Some(tool.definition(prompt.into()).await)
                } else {
                    tracing::warn!("Tool implementation not found in toolset: {}", toolname);
                    None
                }
            })
            .collect::<Vec<_>>()
            .await;

        Ok(self
            .model
            .completion_request(prompt)
            .preamble(self.preamble.clone())
            .messages(chat_history)
            .documents([self.static_context.clone(), dynamic_context].concat())
            .tools([static_tools.clone(), dynamic_tools].concat())
            .temperature_opt(self.temperature)
            .max_tokens_opt(self.max_tokens)
            .additional_params_opt(self.additional_params.clone()))
    }
}

impl<M: CompletionModel> Prompt for Agent<M> {
    async fn prompt(&self, prompt: &str) -> Result<String, PromptError> {
        self.chat(prompt, vec![]).await
    }
}

impl<M: CompletionModel> Prompt for &Agent<M> {
    async fn prompt(&self, prompt: &str) -> Result<String, PromptError> {
        self.chat(prompt, vec![]).await
    }
}

impl<M: CompletionModel> Chat for Agent<M> {
    async fn chat(&self, prompt: &str, chat_history: Vec<Message>) -> Result<String, PromptError> {
        match self.completion(prompt, chat_history).await?.send().await? {
            CompletionResponse {
                choice: ModelChoice::Message(msg),
                ..
            } => Ok(msg),
            CompletionResponse {
                choice: ModelChoice::ToolCall(toolname, _, args),
                ..
            } => Ok(self.tools.call(&toolname, args.to_string()).await?),
        }
    }
}

/// A builder for creating an agent
///
/// # Example
/// ```
/// use rig::{providers::openai, agent::AgentBuilder};
///
/// let openai = openai::Client::from_env();
///
/// let gpt4o = openai.completion_model("gpt-4o");
///
/// // Configure the agent
/// let agent = AgentBuilder::new(model)
///     .preamble("System prompt")
///     .context("Context document 1")
///     .context("Context document 2")
///     .tool(tool1)
///     .tool(tool2)
///     .temperature(0.8)
///     .additional_params(json!({"foo": "bar"}))
///     .build();
/// ```
pub struct AgentBuilder<M: CompletionModel> {
    /// Completion model (e.g.: OpenAI's gpt-3.5-turbo-1106, Cohere's command-r)
    model: M,
    /// System prompt
    preamble: Option<String>,
    /// Context documents always available to the agent
    static_context: Vec<Document>,
    /// Tools that are always available to the agent (by name)
    static_tools: Vec<String>,
    /// Additional parameters to be passed to the model
    additional_params: Option<serde_json::Value>,
    /// Maximum number of tokens for the completion
    max_tokens: Option<u64>,
    /// List of vector store, with the sample number
    dynamic_context: Vec<(usize, Box<dyn VectorStoreIndexDyn>)>,
    /// Dynamic tools
    dynamic_tools: Vec<(usize, Box<dyn VectorStoreIndexDyn>)>,
    /// Temperature of the model
    temperature: Option<f64>,
    /// Actual tool implementations
    tools: ToolSet,
}

impl<M: CompletionModel> AgentBuilder<M> {
    pub fn new(model: M) -> Self {
        Self {
            model,
            preamble: None,
            static_context: vec![],
            static_tools: vec![],
            temperature: None,
            max_tokens: None,
            additional_params: None,
            dynamic_context: vec![],
            dynamic_tools: vec![],
            tools: ToolSet::default(),
        }
    }

    /// Set the system prompt
    pub fn preamble(mut self, preamble: &str) -> Self {
        self.preamble = Some(preamble.into());
        self
    }

    /// Append to the preamble of the agent
    pub fn append_preamble(mut self, doc: &str) -> Self {
        self.preamble = Some(format!(
            "{}\n{}",
            self.preamble.unwrap_or_else(|| "".into()),
            doc
        ));
        self
    }

    /// Add a static context document to the agent
    pub fn context(mut self, doc: &str) -> Self {
        self.static_context.push(Document {
            id: format!("static_doc_{}", self.static_context.len()),
            text: doc.into(),
            additional_props: HashMap::new(),
        });
        self
    }

    /// Add a static tool to the agent
    pub fn tool(mut self, tool: impl Tool + 'static) -> Self {
        let toolname = tool.name();
        self.tools.add_tool(tool);
        self.static_tools.push(toolname);
        self
    }

    /// Add some dynamic context to the agent. On each prompt, `sample` documents from the
    /// dynamic context will be inserted in the request.
    pub fn dynamic_context(
        mut self,
        sample: usize,
        dynamic_context: impl VectorStoreIndexDyn + 'static,
    ) -> Self {
        self.dynamic_context
            .push((sample, Box::new(dynamic_context)));
        self
    }

    /// Add some dynamic tools to the agent. On each prompt, `sample` tools from the
    /// dynamic toolset will be inserted in the request.
    pub fn dynamic_tools(
        mut self,
        sample: usize,
        dynamic_tools: impl VectorStoreIndexDyn + 'static,
        toolset: ToolSet,
    ) -> Self {
        self.dynamic_tools.push((sample, Box::new(dynamic_tools)));
        self.tools.add_tools(toolset);
        self
    }

    /// Set the temperature of the model
    pub fn temperature(mut self, temperature: f64) -> Self {
        self.temperature = Some(temperature);
        self
    }

    /// Set the maximum number of tokens for the completion
    pub fn max_tokens(mut self, max_tokens: u64) -> Self {
        self.max_tokens = Some(max_tokens);
        self
    }

    /// Set additional parameters to be passed to the model
    pub fn additional_params(mut self, params: serde_json::Value) -> Self {
        self.additional_params = Some(params);
        self
    }

    /// Build the agent
    pub fn build(self) -> Agent<M> {
        Agent {
            model: self.model,
            preamble: self.preamble.unwrap_or_default(),
            static_context: self.static_context,
            static_tools: self.static_tools,
            temperature: self.temperature,
            max_tokens: self.max_tokens,
            additional_params: self.additional_params,
            dynamic_context: self.dynamic_context,
            dynamic_tools: self.dynamic_tools,
            tools: self.tools,
        }
    }
}