1use std::fmt::Debug;
23
24use super::openai::{TranscriptionResponse, send_compatible_streaming_request};
25#[cfg(feature = "image")]
26use crate::client::Nothing;
27use crate::client::{
28 self, ApiKey, Capabilities, Capable, DebugExt, Provider, ProviderBuilder, ProviderClient,
29};
30use crate::completion::GetTokenUsage;
31use crate::http_client::multipart::Part;
32use crate::http_client::{self, HttpClientExt, MultipartForm, bearer_auth_header};
33use crate::streaming::StreamingCompletionResponse;
34use crate::transcription::TranscriptionError;
35use crate::{
36 completion::{self, CompletionError, CompletionRequest},
37 embeddings::{self, EmbeddingError},
38 json_utils,
39 providers::openai,
40 telemetry::SpanCombinator,
41 transcription::{self},
42};
43use bytes::Bytes;
44use serde::{Deserialize, Serialize};
45use serde_json::json;
46const DEFAULT_API_VERSION: &str = "2024-10-21";
51
52#[derive(Debug, Clone)]
53pub struct AzureExt {
54 endpoint: String,
55 api_version: String,
56}
57
58impl DebugExt for AzureExt {
59 fn fields(&self) -> impl Iterator<Item = (&'static str, &dyn std::fmt::Debug)> {
60 [
61 ("endpoint", (&self.endpoint as &dyn Debug)),
62 ("api_version", (&self.api_version as &dyn Debug)),
63 ]
64 .into_iter()
65 }
66}
67
68#[derive(Debug, Clone)]
73pub struct AzureExtBuilder {
74 endpoint: Option<String>,
75 api_version: String,
76}
77
78impl Default for AzureExtBuilder {
79 fn default() -> Self {
80 Self {
81 endpoint: None,
82 api_version: DEFAULT_API_VERSION.into(),
83 }
84 }
85}
86
87pub type Client<H = reqwest::Client> = client::Client<AzureExt, H>;
88pub type ClientBuilder<H = reqwest::Client> =
89 client::ClientBuilder<AzureExtBuilder, AzureOpenAIAuth, H>;
90
91impl Provider for AzureExt {
92 type Builder = AzureExtBuilder;
93
94 const VERIFY_PATH: &'static str = "";
96
97 fn build<H>(
98 builder: &client::ClientBuilder<
99 Self::Builder,
100 <Self::Builder as ProviderBuilder>::ApiKey,
101 H,
102 >,
103 ) -> http_client::Result<Self> {
104 let AzureExtBuilder {
105 endpoint,
106 api_version,
107 ..
108 } = builder.ext().clone();
109
110 match endpoint {
111 Some(endpoint) => Ok(Self {
112 endpoint,
113 api_version,
114 }),
115 None => Err(http_client::Error::Instance(
116 "Azure client must be provided an endpoint prior to building".into(),
117 )),
118 }
119 }
120}
121
122impl<H> Capabilities<H> for AzureExt {
123 type Completion = Capable<CompletionModel<H>>;
124 type Embeddings = Capable<EmbeddingModel<H>>;
125 type Transcription = Capable<TranscriptionModel<H>>;
126 #[cfg(feature = "image")]
127 type ImageGeneration = Nothing;
128 #[cfg(feature = "audio")]
129 type AudioGeneration = Capable<AudioGenerationModel<H>>;
130}
131
132impl ProviderBuilder for AzureExtBuilder {
133 type Output = AzureExt;
134 type ApiKey = AzureOpenAIAuth;
135
136 const BASE_URL: &'static str = "";
137
138 fn finish<H>(
139 &self,
140 mut builder: client::ClientBuilder<Self, Self::ApiKey, H>,
141 ) -> http_client::Result<client::ClientBuilder<Self, Self::ApiKey, H>> {
142 use AzureOpenAIAuth::*;
143
144 let auth = builder.get_api_key().clone();
145
146 match auth {
147 Token(token) => bearer_auth_header(builder.headers_mut(), token.as_str())?,
148 ApiKey(key) => {
149 let k = http::HeaderName::from_static("api-key");
150 let v = http::HeaderValue::from_str(key.as_str())?;
151
152 builder.headers_mut().insert(k, v);
153 }
154 }
155
156 Ok(builder)
157 }
158}
159
160impl<H> ClientBuilder<H> {
161 pub fn api_version(mut self, api_version: &str) -> Self {
163 self.ext_mut().api_version = api_version.into();
164
165 self
166 }
167}
168
169impl<H> client::ClientBuilder<AzureExtBuilder, AzureOpenAIAuth, H> {
170 pub fn azure_endpoint(self, endpoint: String) -> ClientBuilder<H> {
172 self.over_ext(|AzureExtBuilder { api_version, .. }| AzureExtBuilder {
173 endpoint: Some(endpoint),
174 api_version,
175 })
176 }
177}
178
179#[derive(Clone)]
182pub enum AzureOpenAIAuth {
183 ApiKey(String),
184 Token(String),
185}
186
187impl ApiKey for AzureOpenAIAuth {}
188
189impl std::fmt::Debug for AzureOpenAIAuth {
190 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
191 match self {
192 Self::ApiKey(_) => write!(f, "API key <REDACTED>"),
193 Self::Token(_) => write!(f, "Token <REDACTED>"),
194 }
195 }
196}
197
198impl<S> From<S> for AzureOpenAIAuth
199where
200 S: Into<String>,
201{
202 fn from(token: S) -> Self {
203 AzureOpenAIAuth::Token(token.into())
204 }
205}
206
207impl<T> Client<T>
208where
209 T: HttpClientExt,
210{
211 fn endpoint(&self) -> &str {
212 &self.ext().endpoint
213 }
214
215 fn api_version(&self) -> &str {
216 &self.ext().api_version
217 }
218
219 fn post_embedding(&self, deployment_id: &str) -> http_client::Result<http_client::Builder> {
220 let url = format!(
221 "{}/openai/deployments/{}/embeddings?api-version={}",
222 self.endpoint(),
223 deployment_id.trim_start_matches('/'),
224 self.api_version()
225 );
226
227 self.post(&url)
228 }
229
230 #[cfg(feature = "audio")]
231 fn post_audio_generation(
232 &self,
233 deployment_id: &str,
234 ) -> http_client::Result<http_client::Builder> {
235 let url = format!(
236 "{}/openai/deployments/{}/audio/speech?api-version={}",
237 self.endpoint(),
238 deployment_id.trim_start_matches('/'),
239 self.api_version()
240 );
241
242 self.post(url)
243 }
244
245 fn post_chat_completion(
246 &self,
247 deployment_id: &str,
248 ) -> http_client::Result<http_client::Builder> {
249 let url = format!(
250 "{}/openai/deployments/{}/chat/completions?api-version={}",
251 self.endpoint(),
252 deployment_id.trim_start_matches('/'),
253 self.api_version()
254 );
255
256 self.post(&url)
257 }
258
259 fn post_transcription(&self, deployment_id: &str) -> http_client::Result<http_client::Builder> {
260 let url = format!(
261 "{}/openai/deployments/{}/audio/translations?api-version={}",
262 self.endpoint(),
263 deployment_id.trim_start_matches('/'),
264 self.api_version()
265 );
266
267 self.post(&url)
268 }
269
270 #[cfg(feature = "image")]
271 fn post_image_generation(
272 &self,
273 deployment_id: &str,
274 ) -> http_client::Result<http_client::Builder> {
275 let url = format!(
276 "{}/openai/deployments/{}/images/generations?api-version={}",
277 self.endpoint(),
278 deployment_id.trim_start_matches('/'),
279 self.api_version()
280 );
281
282 self.post(&url)
283 }
284}
285
286pub struct AzureOpenAIClientParams {
287 api_key: String,
288 version: String,
289 header: String,
290}
291
292impl ProviderClient for Client {
293 type Input = AzureOpenAIClientParams;
294
295 fn from_env() -> Self {
297 let auth = if let Ok(api_key) = std::env::var("AZURE_API_KEY") {
298 AzureOpenAIAuth::ApiKey(api_key)
299 } else if let Ok(token) = std::env::var("AZURE_TOKEN") {
300 AzureOpenAIAuth::Token(token)
301 } else {
302 panic!("Neither AZURE_API_KEY nor AZURE_TOKEN is set");
303 };
304
305 let api_version = std::env::var("AZURE_API_VERSION").expect("AZURE_API_VERSION not set");
306 let azure_endpoint = std::env::var("AZURE_ENDPOINT").expect("AZURE_ENDPOINT not set");
307
308 Self::builder()
309 .api_key(auth)
310 .azure_endpoint(azure_endpoint)
311 .api_version(&api_version)
312 .build()
313 .unwrap()
314 }
315
316 fn from_val(
317 AzureOpenAIClientParams {
318 api_key,
319 version,
320 header,
321 }: Self::Input,
322 ) -> Self {
323 let auth = AzureOpenAIAuth::ApiKey(api_key.to_string());
324
325 Self::builder()
326 .api_key(auth)
327 .azure_endpoint(header)
328 .api_version(&version)
329 .build()
330 .unwrap()
331 }
332}
333
334#[derive(Debug, Deserialize)]
335struct ApiErrorResponse {
336 message: String,
337}
338
339#[derive(Debug, Deserialize)]
340#[serde(untagged)]
341enum ApiResponse<T> {
342 Ok(T),
343 Err(ApiErrorResponse),
344}
345
346pub const TEXT_EMBEDDING_3_LARGE: &str = "text-embedding-3-large";
352pub const TEXT_EMBEDDING_3_SMALL: &str = "text-embedding-3-small";
354pub const TEXT_EMBEDDING_ADA_002: &str = "text-embedding-ada-002";
356
357fn model_dimensions_from_identifier(identifier: &str) -> Option<usize> {
358 match identifier {
359 TEXT_EMBEDDING_3_LARGE => Some(3_072),
360 TEXT_EMBEDDING_3_SMALL | TEXT_EMBEDDING_ADA_002 => Some(1_536),
361 _ => None,
362 }
363}
364
365#[derive(Debug, Deserialize)]
366pub struct EmbeddingResponse {
367 pub object: String,
368 pub data: Vec<EmbeddingData>,
369 pub model: String,
370 pub usage: Usage,
371}
372
373impl From<ApiErrorResponse> for EmbeddingError {
374 fn from(err: ApiErrorResponse) -> Self {
375 EmbeddingError::ProviderError(err.message)
376 }
377}
378
379impl From<ApiResponse<EmbeddingResponse>> for Result<EmbeddingResponse, EmbeddingError> {
380 fn from(value: ApiResponse<EmbeddingResponse>) -> Self {
381 match value {
382 ApiResponse::Ok(response) => Ok(response),
383 ApiResponse::Err(err) => Err(EmbeddingError::ProviderError(err.message)),
384 }
385 }
386}
387
388#[derive(Debug, Deserialize)]
389pub struct EmbeddingData {
390 pub object: String,
391 pub embedding: Vec<f64>,
392 pub index: usize,
393}
394
395#[derive(Clone, Debug, Deserialize)]
396pub struct Usage {
397 pub prompt_tokens: usize,
398 pub total_tokens: usize,
399}
400
401impl GetTokenUsage for Usage {
402 fn token_usage(&self) -> Option<crate::completion::Usage> {
403 let mut usage = crate::completion::Usage::new();
404
405 usage.input_tokens = self.prompt_tokens as u64;
406 usage.total_tokens = self.total_tokens as u64;
407 usage.output_tokens = usage.total_tokens - usage.input_tokens;
408
409 Some(usage)
410 }
411}
412
413impl std::fmt::Display for Usage {
414 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
415 write!(
416 f,
417 "Prompt tokens: {} Total tokens: {}",
418 self.prompt_tokens, self.total_tokens
419 )
420 }
421}
422
423#[derive(Clone)]
424pub struct EmbeddingModel<T = reqwest::Client> {
425 client: Client<T>,
426 pub model: String,
427 ndims: usize,
428}
429
430impl<T> embeddings::EmbeddingModel for EmbeddingModel<T>
431where
432 T: HttpClientExt + Default + Clone + 'static,
433{
434 const MAX_DOCUMENTS: usize = 1024;
435
436 type Client = Client<T>;
437
438 fn make(client: &Self::Client, model: impl Into<String>, dims: Option<usize>) -> Self {
439 Self::new(client.clone(), model, dims)
440 }
441
442 fn ndims(&self) -> usize {
443 self.ndims
444 }
445
446 async fn embed_texts(
447 &self,
448 documents: impl IntoIterator<Item = String>,
449 ) -> Result<Vec<embeddings::Embedding>, EmbeddingError> {
450 let documents = documents.into_iter().collect::<Vec<_>>();
451
452 let body = serde_json::to_vec(&json!({
453 "input": documents,
454 }))?;
455
456 let req = self
457 .client
458 .post_embedding(self.model.as_str())?
459 .body(body)
460 .map_err(|e| EmbeddingError::HttpError(e.into()))?;
461
462 let response = self.client.send(req).await?;
463
464 if response.status().is_success() {
465 let body: Vec<u8> = response.into_body().await?;
466 let body: ApiResponse<EmbeddingResponse> = serde_json::from_slice(&body)?;
467
468 match body {
469 ApiResponse::Ok(response) => {
470 tracing::info!(target: "rig",
471 "Azure embedding token usage: {}",
472 response.usage
473 );
474
475 if response.data.len() != documents.len() {
476 return Err(EmbeddingError::ResponseError(
477 "Response data length does not match input length".into(),
478 ));
479 }
480
481 Ok(response
482 .data
483 .into_iter()
484 .zip(documents.into_iter())
485 .map(|(embedding, document)| embeddings::Embedding {
486 document,
487 vec: embedding.embedding,
488 })
489 .collect())
490 }
491 ApiResponse::Err(err) => Err(EmbeddingError::ProviderError(err.message)),
492 }
493 } else {
494 let text = http_client::text(response).await?;
495 Err(EmbeddingError::ProviderError(text))
496 }
497 }
498}
499
500impl<T> EmbeddingModel<T> {
501 pub fn new(client: Client<T>, model: impl Into<String>, ndims: Option<usize>) -> Self {
502 let model = model.into();
503 let ndims = ndims
504 .or(model_dimensions_from_identifier(&model))
505 .unwrap_or_default();
506
507 Self {
508 client,
509 model,
510 ndims,
511 }
512 }
513
514 pub fn with_model(client: Client<T>, model: &str, ndims: Option<usize>) -> Self {
515 let ndims = ndims.unwrap_or_default();
516
517 Self {
518 client,
519 model: model.into(),
520 ndims,
521 }
522 }
523}
524
525pub const O1: &str = "o1";
531pub const O1_PREVIEW: &str = "o1-preview";
533pub const O1_MINI: &str = "o1-mini";
535pub const GPT_4O: &str = "gpt-4o";
537pub const GPT_4O_MINI: &str = "gpt-4o-mini";
539pub const GPT_4O_REALTIME_PREVIEW: &str = "gpt-4o-realtime-preview";
541pub const GPT_4_TURBO: &str = "gpt-4";
543pub const GPT_4: &str = "gpt-4";
545pub const GPT_4_32K: &str = "gpt-4-32k";
547pub const GPT_4_32K_0613: &str = "gpt-4-32k";
549pub const GPT_35_TURBO: &str = "gpt-3.5-turbo";
551pub const GPT_35_TURBO_INSTRUCT: &str = "gpt-3.5-turbo-instruct";
553pub const GPT_35_TURBO_16K: &str = "gpt-3.5-turbo-16k";
555
556#[derive(Debug, Serialize, Deserialize)]
557pub(super) struct AzureOpenAICompletionRequest {
558 model: String,
559 pub messages: Vec<openai::Message>,
560 #[serde(skip_serializing_if = "Option::is_none")]
561 temperature: Option<f64>,
562 #[serde(skip_serializing_if = "Vec::is_empty")]
563 tools: Vec<openai::ToolDefinition>,
564 #[serde(skip_serializing_if = "Option::is_none")]
565 tool_choice: Option<crate::providers::openrouter::ToolChoice>,
566 #[serde(flatten, skip_serializing_if = "Option::is_none")]
567 pub additional_params: Option<serde_json::Value>,
568}
569
570impl TryFrom<(&str, CompletionRequest)> for AzureOpenAICompletionRequest {
571 type Error = CompletionError;
572
573 fn try_from((model, req): (&str, CompletionRequest)) -> Result<Self, Self::Error> {
574 if req.tool_choice.is_some() {
576 tracing::warn!(
577 "Tool choice is currently not supported in Azure OpenAI. This should be fixed by Rig 0.25."
578 );
579 }
580
581 let mut full_history: Vec<openai::Message> = match &req.preamble {
582 Some(preamble) => vec![openai::Message::system(preamble)],
583 None => vec![],
584 };
585
586 if let Some(docs) = req.normalized_documents() {
587 let docs: Vec<openai::Message> = docs.try_into()?;
588 full_history.extend(docs);
589 }
590
591 let chat_history: Vec<openai::Message> = req
592 .chat_history
593 .clone()
594 .into_iter()
595 .map(|message| message.try_into())
596 .collect::<Result<Vec<Vec<openai::Message>>, _>>()?
597 .into_iter()
598 .flatten()
599 .collect();
600
601 full_history.extend(chat_history);
602
603 let tool_choice = req
604 .tool_choice
605 .clone()
606 .map(crate::providers::openrouter::ToolChoice::try_from)
607 .transpose()?;
608
609 Ok(Self {
610 model: model.to_string(),
611 messages: full_history,
612 temperature: req.temperature,
613 tools: req
614 .tools
615 .clone()
616 .into_iter()
617 .map(openai::ToolDefinition::from)
618 .collect::<Vec<_>>(),
619 tool_choice,
620 additional_params: req.additional_params,
621 })
622 }
623}
624
625#[derive(Clone)]
626pub struct CompletionModel<T = reqwest::Client> {
627 client: Client<T>,
628 pub model: String,
630}
631
632impl<T> CompletionModel<T> {
633 pub fn new(client: Client<T>, model: impl Into<String>) -> Self {
634 Self {
635 client,
636 model: model.into(),
637 }
638 }
639}
640
641impl<T> completion::CompletionModel for CompletionModel<T>
642where
643 T: HttpClientExt + Clone + Default + std::fmt::Debug + Send + 'static,
644{
645 type Response = openai::CompletionResponse;
646 type StreamingResponse = openai::StreamingCompletionResponse;
647 type Client = Client<T>;
648
649 fn make(client: &Self::Client, model: impl Into<String>) -> Self {
650 Self::new(client.clone(), model.into())
651 }
652
653 async fn completion(
654 &self,
655 completion_request: CompletionRequest,
656 ) -> Result<completion::CompletionResponse<openai::CompletionResponse>, CompletionError> {
657 let span = if tracing::Span::current().is_disabled() {
658 info_span!(
659 target: "rig::completions",
660 "chat",
661 gen_ai.operation.name = "chat",
662 gen_ai.provider.name = "azure.openai",
663 gen_ai.request.model = self.model,
664 gen_ai.system_instructions = &completion_request.preamble,
665 gen_ai.response.id = tracing::field::Empty,
666 gen_ai.response.model = tracing::field::Empty,
667 gen_ai.usage.output_tokens = tracing::field::Empty,
668 gen_ai.usage.input_tokens = tracing::field::Empty,
669 )
670 } else {
671 tracing::Span::current()
672 };
673
674 let request =
675 AzureOpenAICompletionRequest::try_from((self.model.as_ref(), completion_request))?;
676
677 if enabled!(Level::TRACE) {
678 tracing::trace!(target: "rig::completions",
679 "Azure OpenAI completion request: {}",
680 serde_json::to_string_pretty(&request)?
681 );
682 }
683
684 let body = serde_json::to_vec(&request)?;
685
686 let req = self
687 .client
688 .post_chat_completion(&self.model)?
689 .body(body)
690 .map_err(http_client::Error::from)?;
691
692 async move {
693 let response = self.client.send::<_, Bytes>(req).await.unwrap();
694
695 let status = response.status();
696 let response_body = response.into_body().into_future().await?.to_vec();
697
698 if status.is_success() {
699 match serde_json::from_slice::<ApiResponse<openai::CompletionResponse>>(
700 &response_body,
701 )? {
702 ApiResponse::Ok(response) => {
703 let span = tracing::Span::current();
704 span.record_response_metadata(&response);
705 span.record_token_usage(&response.usage);
706 if enabled!(Level::TRACE) {
707 tracing::trace!(target: "rig::completions",
708 "Azure OpenAI completion response: {}",
709 serde_json::to_string_pretty(&response)?
710 );
711 }
712 response.try_into()
713 }
714 ApiResponse::Err(err) => Err(CompletionError::ProviderError(err.message)),
715 }
716 } else {
717 Err(CompletionError::ProviderError(
718 String::from_utf8_lossy(&response_body).to_string(),
719 ))
720 }
721 }
722 .instrument(span)
723 .await
724 }
725
726 async fn stream(
727 &self,
728 completion_request: CompletionRequest,
729 ) -> Result<StreamingCompletionResponse<Self::StreamingResponse>, CompletionError> {
730 let preamble = completion_request.preamble.clone();
731 let mut request =
732 AzureOpenAICompletionRequest::try_from((self.model.as_ref(), completion_request))?;
733
734 let params = json_utils::merge(
735 request.additional_params.unwrap_or(serde_json::json!({})),
736 serde_json::json!({"stream": true, "stream_options": {"include_usage": true} }),
737 );
738
739 request.additional_params = Some(params);
740
741 if enabled!(Level::TRACE) {
742 tracing::trace!(target: "rig::completions",
743 "Azure OpenAI completion request: {}",
744 serde_json::to_string_pretty(&request)?
745 );
746 }
747
748 let body = serde_json::to_vec(&request)?;
749
750 let req = self
751 .client
752 .post_chat_completion(&self.model)?
753 .body(body)
754 .map_err(http_client::Error::from)?;
755
756 let span = if tracing::Span::current().is_disabled() {
757 info_span!(
758 target: "rig::completions",
759 "chat_streaming",
760 gen_ai.operation.name = "chat_streaming",
761 gen_ai.provider.name = "azure.openai",
762 gen_ai.request.model = self.model,
763 gen_ai.system_instructions = &preamble,
764 gen_ai.response.id = tracing::field::Empty,
765 gen_ai.response.model = tracing::field::Empty,
766 gen_ai.usage.output_tokens = tracing::field::Empty,
767 gen_ai.usage.input_tokens = tracing::field::Empty,
768 )
769 } else {
770 tracing::Span::current()
771 };
772
773 tracing_futures::Instrument::instrument(
774 send_compatible_streaming_request(self.client.clone(), req),
775 span,
776 )
777 .await
778 }
779}
780
781#[derive(Clone)]
786pub struct TranscriptionModel<T = reqwest::Client> {
787 client: Client<T>,
788 pub model: String,
790}
791
792impl<T> TranscriptionModel<T> {
793 pub fn new(client: Client<T>, model: impl Into<String>) -> Self {
794 Self {
795 client,
796 model: model.into(),
797 }
798 }
799}
800
801impl<T> transcription::TranscriptionModel for TranscriptionModel<T>
802where
803 T: HttpClientExt + Clone + 'static,
804{
805 type Response = TranscriptionResponse;
806 type Client = Client<T>;
807
808 fn make(client: &Self::Client, model: impl Into<String>) -> Self {
809 Self::new(client.clone(), model)
810 }
811
812 async fn transcription(
813 &self,
814 request: transcription::TranscriptionRequest,
815 ) -> Result<
816 transcription::TranscriptionResponse<Self::Response>,
817 transcription::TranscriptionError,
818 > {
819 let data = request.data;
820
821 let mut body =
822 MultipartForm::new().part(Part::bytes("file", data).filename(request.filename.clone()));
823
824 if let Some(prompt) = request.prompt {
825 body = body.text("prompt", prompt.clone());
826 }
827
828 if let Some(ref temperature) = request.temperature {
829 body = body.text("temperature", temperature.to_string());
830 }
831
832 if let Some(ref additional_params) = request.additional_params {
833 for (key, value) in additional_params
834 .as_object()
835 .expect("Additional Parameters to OpenAI Transcription should be a map")
836 {
837 body = body.text(key.to_owned(), value.to_string());
838 }
839 }
840
841 let req = self
842 .client
843 .post_transcription(&self.model)?
844 .body(body)
845 .map_err(|e| TranscriptionError::HttpError(e.into()))?;
846
847 let response = self.client.send_multipart::<Bytes>(req).await?;
848 let status = response.status();
849 let response_body = response.into_body().into_future().await?.to_vec();
850
851 if status.is_success() {
852 match serde_json::from_slice::<ApiResponse<TranscriptionResponse>>(&response_body)? {
853 ApiResponse::Ok(response) => response.try_into(),
854 ApiResponse::Err(api_error_response) => Err(TranscriptionError::ProviderError(
855 api_error_response.message,
856 )),
857 }
858 } else {
859 Err(TranscriptionError::ProviderError(
860 String::from_utf8_lossy(&response_body).to_string(),
861 ))
862 }
863 }
864}
865
866#[cfg(feature = "image")]
870pub use image_generation::*;
871use tracing::{Instrument, Level, enabled, info_span};
872#[cfg(feature = "image")]
873#[cfg_attr(docsrs, doc(cfg(feature = "image")))]
874mod image_generation {
875 use crate::http_client::HttpClientExt;
876 use crate::image_generation;
877 use crate::image_generation::{ImageGenerationError, ImageGenerationRequest};
878 use crate::providers::azure::{ApiResponse, Client};
879 use crate::providers::openai::ImageGenerationResponse;
880 use bytes::Bytes;
881 use serde_json::json;
882
883 #[derive(Clone)]
884 pub struct ImageGenerationModel<T = reqwest::Client> {
885 client: Client<T>,
886 pub model: String,
887 }
888
889 impl<T> image_generation::ImageGenerationModel for ImageGenerationModel<T>
890 where
891 T: HttpClientExt + Clone + Default + std::fmt::Debug + Send + 'static,
892 {
893 type Response = ImageGenerationResponse;
894
895 type Client = Client<T>;
896
897 fn make(client: &Self::Client, model: impl Into<String>) -> Self {
898 Self {
899 client: client.clone(),
900 model: model.into(),
901 }
902 }
903
904 async fn image_generation(
905 &self,
906 generation_request: ImageGenerationRequest,
907 ) -> Result<image_generation::ImageGenerationResponse<Self::Response>, ImageGenerationError>
908 {
909 let request = json!({
910 "model": self.model,
911 "prompt": generation_request.prompt,
912 "size": format!("{}x{}", generation_request.width, generation_request.height),
913 "response_format": "b64_json"
914 });
915
916 let body = serde_json::to_vec(&request)?;
917
918 let req = self
919 .client
920 .post_image_generation(&self.model)?
921 .body(body)
922 .map_err(|e| ImageGenerationError::HttpError(e.into()))?;
923
924 let response = self.client.send::<_, Bytes>(req).await?;
925 let status = response.status();
926 let response_body = response.into_body().into_future().await?.to_vec();
927
928 if !status.is_success() {
929 return Err(ImageGenerationError::ProviderError(format!(
930 "{status}: {}",
931 String::from_utf8_lossy(&response_body)
932 )));
933 }
934
935 match serde_json::from_slice::<ApiResponse<ImageGenerationResponse>>(&response_body)? {
936 ApiResponse::Ok(response) => response.try_into(),
937 ApiResponse::Err(err) => Err(ImageGenerationError::ProviderError(err.message)),
938 }
939 }
940 }
941}
942#[cfg(feature = "audio")]
947pub use audio_generation::*;
948
949#[cfg(feature = "audio")]
950#[cfg_attr(docsrs, doc(cfg(feature = "audio")))]
951mod audio_generation {
952 use super::Client;
953 use crate::audio_generation::{
954 self, AudioGenerationError, AudioGenerationRequest, AudioGenerationResponse,
955 };
956 use crate::http_client::HttpClientExt;
957 use bytes::Bytes;
958 use serde_json::json;
959
960 #[derive(Clone)]
961 pub struct AudioGenerationModel<T = reqwest::Client> {
962 client: Client<T>,
963 model: String,
964 }
965
966 impl<T> AudioGenerationModel<T> {
967 pub fn new(client: Client<T>, deployment_name: impl Into<String>) -> Self {
968 Self {
969 client,
970 model: deployment_name.into(),
971 }
972 }
973 }
974
975 impl<T> audio_generation::AudioGenerationModel for AudioGenerationModel<T>
976 where
977 T: HttpClientExt + Clone + Default + std::fmt::Debug + Send + 'static,
978 {
979 type Response = Bytes;
980 type Client = Client<T>;
981
982 fn make(client: &Self::Client, model: impl Into<String>) -> Self {
983 Self::new(client.clone(), model)
984 }
985
986 async fn audio_generation(
987 &self,
988 request: AudioGenerationRequest,
989 ) -> Result<AudioGenerationResponse<Self::Response>, AudioGenerationError> {
990 let request = json!({
991 "model": self.model,
992 "input": request.text,
993 "voice": request.voice,
994 "speed": request.speed,
995 });
996
997 let body = serde_json::to_vec(&request)?;
998
999 let req = self
1000 .client
1001 .post_audio_generation("/audio/speech")?
1002 .header("Content-Type", "application/json")
1003 .body(body)
1004 .map_err(|e| AudioGenerationError::HttpError(e.into()))?;
1005
1006 let response = self.client.send::<_, Bytes>(req).await?;
1007 let status = response.status();
1008 let response_body = response.into_body().into_future().await?;
1009
1010 if !status.is_success() {
1011 return Err(AudioGenerationError::ProviderError(format!(
1012 "{status}: {}",
1013 String::from_utf8_lossy(&response_body)
1014 )));
1015 }
1016
1017 Ok(AudioGenerationResponse {
1018 audio: response_body.to_vec(),
1019 response: response_body,
1020 })
1021 }
1022 }
1023}
1024
1025#[cfg(test)]
1026mod azure_tests {
1027 use super::*;
1028
1029 use crate::OneOrMany;
1030 use crate::client::{completion::CompletionClient, embeddings::EmbeddingsClient};
1031 use crate::completion::CompletionModel;
1032 use crate::embeddings::EmbeddingModel;
1033
1034 #[tokio::test]
1035 #[ignore]
1036 async fn test_azure_embedding() {
1037 let _ = tracing_subscriber::fmt::try_init();
1038
1039 let client = Client::<reqwest::Client>::from_env();
1040 let model = client.embedding_model(TEXT_EMBEDDING_3_SMALL);
1041 let embeddings = model
1042 .embed_texts(vec!["Hello, world!".to_string()])
1043 .await
1044 .unwrap();
1045
1046 tracing::info!("Azure embedding: {:?}", embeddings);
1047 }
1048
1049 #[tokio::test]
1050 #[ignore]
1051 async fn test_azure_completion() {
1052 let _ = tracing_subscriber::fmt::try_init();
1053
1054 let client = Client::<reqwest::Client>::from_env();
1055 let model = client.completion_model(GPT_4O_MINI);
1056 let completion = model
1057 .completion(CompletionRequest {
1058 preamble: Some("You are a helpful assistant.".to_string()),
1059 chat_history: OneOrMany::one("Hello!".into()),
1060 documents: vec![],
1061 max_tokens: Some(100),
1062 temperature: Some(0.0),
1063 tools: vec![],
1064 tool_choice: None,
1065 additional_params: None,
1066 })
1067 .await
1068 .unwrap();
1069
1070 tracing::info!("Azure completion: {:?}", completion);
1071 }
1072}