rig/providers/together/
embedding.rs1use serde::Deserialize;
7use serde_json::json;
8
9use crate::{
10 embeddings::{self, EmbeddingError},
11 http_client::{self, HttpClientExt},
12};
13
14use super::{
15 Client,
16 client::together_ai_api_types::{ApiErrorResponse, ApiResponse},
17};
18
19pub const BGE_BASE_EN_V1_5: &str = "BAAI/bge-base-en-v1.5";
23pub const BGE_LARGE_EN_V1_5: &str = "BAAI/bge-large-en-v1.5";
24pub const BERT_BASE_UNCASED: &str = "bert-base-uncased";
25pub const M2_BERT_2K_RETRIEVAL_ENCODER_V1: &str = "hazyresearch/M2-BERT-2k-Retrieval-Encoder-V1";
26pub const M2_BERT_80M_32K_RETRIEVAL: &str = "togethercomputer/m2-bert-80M-32k-retrieval";
27pub const M2_BERT_80M_2K_RETRIEVAL: &str = "togethercomputer/m2-bert-80M-2k-retrieval";
28pub const M2_BERT_80M_8K_RETRIEVAL: &str = "togethercomputer/m2-bert-80M-8k-retrieval";
29pub const SENTENCE_BERT: &str = "sentence-transformers/msmarco-bert-base-dot-v5";
30pub const UAE_LARGE_V1: &str = "WhereIsAI/UAE-Large-V1";
31
32#[derive(Debug, Deserialize)]
33pub struct EmbeddingResponse {
34 pub model: String,
35 pub object: String,
36 pub data: Vec<EmbeddingData>,
37}
38
39impl From<ApiErrorResponse> for EmbeddingError {
40 fn from(err: ApiErrorResponse) -> Self {
41 EmbeddingError::ProviderError(err.message())
42 }
43}
44
45impl From<ApiResponse<EmbeddingResponse>> for Result<EmbeddingResponse, EmbeddingError> {
46 fn from(value: ApiResponse<EmbeddingResponse>) -> Self {
47 match value {
48 ApiResponse::Ok(response) => Ok(response),
49 ApiResponse::Error(err) => Err(EmbeddingError::ProviderError(err.message())),
50 }
51 }
52}
53
54#[derive(Debug, Deserialize)]
55pub struct EmbeddingData {
56 pub object: String,
57 pub embedding: Vec<f64>,
58 pub index: usize,
59}
60
61#[derive(Debug, Deserialize)]
62pub struct Usage {
63 pub prompt_tokens: usize,
64 pub total_tokens: usize,
65}
66
67#[derive(Clone)]
68pub struct EmbeddingModel<T = reqwest::Client> {
69 client: Client<T>,
70 pub model: String,
71 ndims: usize,
72}
73
74impl<T> embeddings::EmbeddingModel for EmbeddingModel<T>
75where
76 T: HttpClientExt + Default + Clone + Send + 'static,
77{
78 const MAX_DOCUMENTS: usize = 1024; type Client = Client<T>;
81
82 fn make(client: &Self::Client, model: impl Into<String>, dims: Option<usize>) -> Self {
83 Self::new(client.clone(), model, dims.unwrap_or_default())
84 }
85
86 fn ndims(&self) -> usize {
87 self.ndims
88 }
89
90 #[cfg_attr(feature = "worker", worker::send)]
91 async fn embed_texts(
92 &self,
93 documents: impl IntoIterator<Item = String>,
94 ) -> Result<Vec<embeddings::Embedding>, EmbeddingError> {
95 let documents = documents.into_iter().collect::<Vec<_>>();
96
97 let body = serde_json::to_vec(&json!({
98 "model": self.model,
99 "input": documents,
100 }))?;
101
102 let req = self
103 .client
104 .post("/v1/embeddings")?
105 .body(body)
106 .map_err(|e| EmbeddingError::HttpError(e.into()))?;
107
108 let response = self.client.send(req).await?;
109
110 if response.status().is_success() {
111 let body: Vec<u8> = response.into_body().await?;
112 let body: ApiResponse<EmbeddingResponse> = serde_json::from_slice(&body)?;
113
114 match body {
115 ApiResponse::Ok(response) => {
116 if response.data.len() != documents.len() {
117 return Err(EmbeddingError::ResponseError(
118 "Response data length does not match input length".into(),
119 ));
120 }
121
122 Ok(response
123 .data
124 .into_iter()
125 .zip(documents.into_iter())
126 .map(|(embedding, document)| embeddings::Embedding {
127 document,
128 vec: embedding.embedding,
129 })
130 .collect())
131 }
132 ApiResponse::Error(err) => Err(EmbeddingError::ProviderError(err.message())),
133 }
134 } else {
135 let text = http_client::text(response).await?;
136 Err(EmbeddingError::ProviderError(text))
137 }
138 }
139}
140
141impl<T> EmbeddingModel<T>
142where
143 T: Default,
144{
145 pub fn new(client: Client<T>, model: impl Into<String>, ndims: usize) -> Self {
146 Self {
147 client,
148 model: model.into(),
149 ndims,
150 }
151 }
152}