rhusics/collide/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
//! Generic data structures and algorithms for collision detection
pub use collision::{CollisionStrategy, ComputeBound, Contact};
pub use collision::prelude::Primitive;
pub mod narrow;
pub mod broad;
pub mod prelude2d;
pub mod prelude3d;
use std::fmt::Debug;
use cgmath::prelude::*;
use collision::prelude::*;
/// Used to check if two shapes should be checked for collisions
pub trait Collider {
/// Should shapes generate contact events
fn should_generate_contacts(&self, other: &Self) -> bool;
}
impl<'a> Collider for () {
fn should_generate_contacts(&self, _: &Self) -> bool {
true
}
}
/// Control continuous mode for shapes
#[derive(Debug, Clone, PartialOrd, PartialEq)]
#[cfg_attr(feature = "eders", derive(Serialize, Deserialize))]
pub enum CollisionMode {
/// Discrete collision mode
Discrete,
/// Continuous collision mode
Continuous,
}
/// Contains all contact information for a single contact, together with IDs of the colliding bodies
///
/// # Type parameters
///
/// - `ID`: The ID type of the body. This is supplied by the user of the library. In the ECS case,
/// this will be [`Entity`](https://docs.rs/specs/0.9.5/specs/struct.Entity.html).
/// - `V`: cgmath vector type
#[derive(Debug, Clone)]
pub struct ContactEvent<ID, P>
where
P: EuclideanSpace,
P::Diff: Debug,
{
/// The ids of the two colliding bodies
pub bodies: (ID, ID),
/// The contact between the colliding bodies
pub contact: Contact<P>,
}
impl<ID, P> ContactEvent<ID, P>
where
ID: Clone + Debug,
P: EuclideanSpace,
P::Diff: VectorSpace + Zero + Debug,
{
/// Create a new contact event
pub fn new(bodies: (ID, ID), contact: Contact<P>) -> Self {
Self { bodies, contact }
}
/// Convenience function to create a contact set with a simple [`Contact`](struct.Contact.html).
pub fn new_simple(strategy: CollisionStrategy, bodies: (ID, ID)) -> Self {
Self::new(bodies, Contact::new(strategy))
}
}
/// Collision shape describing a complete collision object in the collision world.
///
/// Can handle both convex shapes, and concave shapes, by subdividing the concave shapes into
/// multiple convex shapes. This task is up to the user of the library to perform, no subdivision is
/// done automatically in the library.
///
/// Contains cached information about the base bounding box containing all primitives,
/// in model space coordinates. Also contains a cached version of the transformed bounding box,
/// in world space coordinates.
///
/// Also have details about what collision strategy/mode to use for contact resolution with this
/// shape.
///
/// ### Type parameters:
///
/// - `P`: Primitive type
/// - `T`: Transform type
/// - `B`: Bounding volume type
/// - `Y`: Shape type (see `Collider`)
#[derive(Debug, Clone)]
#[cfg_attr(feature = "eders", derive(Serialize, Deserialize))]
pub struct CollisionShape<P, T, B, Y = ()>
where
P: Primitive,
{
/// Enable/Disable collision detection for this shape
pub enabled: bool,
base_bound: B,
transformed_bound: B,
primitives: Vec<(P, T)>,
strategy: CollisionStrategy,
mode: CollisionMode,
ty: Y,
}
impl<P, T, B, Y> CollisionShape<P, T, B, Y>
where
P: Primitive + ComputeBound<B>,
B: Bound<Point = P::Point> + Union<B, Output = B> + Clone,
T: Transform<P::Point>,
Y: Default,
{
/// Create a new collision shape, with multiple collision primitives.
///
/// Will compute and cache the base bounding box that contains all the given primitives,
/// in model space coordinates.
///
/// # Parameters
///
/// - `strategy`: The collision strategy to use for this shape.
/// - `primitives`: List of all primitives that make up this shape.
/// - `ty`: The shape type, use () if not needed
pub fn new_complex(
strategy: CollisionStrategy,
mode: CollisionMode,
primitives: Vec<(P, T)>,
ty: Y,
) -> Self {
let bound: B = get_bound(&primitives);
Self {
base_bound: bound.clone(),
primitives,
enabled: true,
transformed_bound: bound,
strategy,
mode,
ty,
}
}
/// Convenience function to create a simple collision shape with only a single given primitive,
/// with no local-to-model transform.
///
/// # Parameters
///
/// - `strategy`: The collision strategy to use for this shape.
/// - `primitive`: The collision primitive.
pub fn new_simple(strategy: CollisionStrategy, mode: CollisionMode, primitive: P) -> Self {
Self::new_complex(
strategy,
mode,
vec![(primitive, T::one())],
Default::default(),
)
}
/// Convenience function to create a simple collision shape with only a single given primitive,
/// and a shape type, with no local-to-model transform.
///
/// # Parameters
///
/// - `strategy`: The collision strategy to use for this shape.
/// - `primitive`: The collision primitive.
pub fn new_simple_with_type(
strategy: CollisionStrategy,
mode: CollisionMode,
primitive: P,
ty: Y,
) -> Self {
Self::new_complex(strategy, mode, vec![(primitive, T::one())], ty)
}
/// Convenience function to create a simple collision shape with only a single given primitive,
/// with a given local-to-model transform.
///
/// # Parameters
///
/// - `strategy`: The collision strategy to use for this shape.
/// - `primitive`: The collision primitive.
/// - `transform`: Local-to-model transform of the primitive.
pub fn new_simple_offset(
strategy: CollisionStrategy,
mode: CollisionMode,
primitive: P,
transform: T,
) -> Self {
Self::new_complex(
strategy,
mode,
vec![(primitive, transform)],
Default::default(),
)
}
/// Update the cached transformed bounding box in world space coordinates.
///
/// If the end transform is given, that will always be used. If the collision mode of the shape
/// is `Continuous`, both the start and end transforms will be added to the transformed bounding
/// box. This will make broad phase detect collisions for the whole transformation path.
///
/// ## Parameters
///
/// - `start`: Current model-to-world transform of the shape at the start of the frame.
/// - `end`: Optional model-to-world transform of the shaped at the end of the frame.
pub fn update(&mut self, start: &T, end: Option<&T>) {
self.transformed_bound = match end {
None => self.base_bound.transform_volume(start),
Some(end_t) => {
let base = self.base_bound.transform_volume(end_t);
if self.mode == CollisionMode::Continuous {
base.union(&self.base_bound.transform_volume(start))
} else {
base
}
}
};
}
/// Return the current transformed bound for the shape
///
pub fn bound(&self) -> &B {
&self.transformed_bound
}
/// Borrow the primitives of the shape
pub fn primitives(&self) -> &Vec<(P, T)> {
&self.primitives
}
}
impl<P, T, B, Y> HasBound for CollisionShape<P, T, B, Y>
where
P: Primitive + ComputeBound<B>,
B: Bound<Point = P::Point> + Union<B, Output = B> + Clone,
T: Transform<P::Point>,
Y: Default,
{
type Bound = B;
fn bound(&self) -> &Self::Bound {
&self.transformed_bound
}
}
fn get_bound<P, T, B>(primitives: &Vec<(P, T)>) -> B
where
P: Primitive + ComputeBound<B>,
B: Bound<Point = P::Point> + Union<B, Output = B>,
T: Transform<P::Point>,
{
primitives
.iter()
.map(|&(ref p, ref t)| p.compute_bound().transform_volume(t))
.fold(B::empty(), |bound, b| bound.union(&b))
}