1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
//! Functions for calculating RGB↔XYZ conversion matrices and performing basic
//! matrix manipulation.
//!
//! Specifically, [`calculate`] generates the RGB→XYZ change of basis matrix
//! from chromacities of the reference white point and red, green and blue
//! primary colours.  Inversing that matrix with [`inversed_copy`] constructs
//! change of basis in the opposite direction and transposing with
//! [`transposed_copy`] results in a matrix whose rows are XYZ coordinates of
//! the primary colours.


/// Trait for scalar type used in calculations.
///
/// An implementation of this trait is provided to all types which satisfy this
/// traits bounds.
pub trait Scalar:
    Clone + num_traits::NumRef + num_traits::NumAssignRef + num_traits::Signed {
}

impl<T> Scalar for T where
    T: Clone
        + std::ops::Neg<Output = Self>
        + num_traits::NumRef
        + num_traits::NumAssignRef
        + num_traits::Signed
{
}


/// A two-dimensional 3×3 array.
///
/// The crate assumes a row-major order for the matrix, i.e. the first index
/// specifies the row and the second index specifies column within that row.
pub type Matrix<K> = [[K; 3]; 3];


/// Calculates change of basis matrix for moving from linear RGB to XYZ colour
/// spaces.
///
/// The matrix is calculated from XYZ coordinates of a reference white point and
/// chromacities of the three primary colours (red, green and blue).  (Note that
/// [`super::Chromaticity::to_xyz`] function allows conversion from
/// chromaticity to XYZ coordinates thus the function may be used when only x and
/// y coordinates of the white point are known).
///
/// The result is a three-by-three matrix M such that multiplying it by
/// a column-vector representing a colour in linear RGB space results in
/// a column-vector representing the same colour in XYZ coordinates.
///
/// To get the change of basis matrix for moving in the other direction
/// (i.e. from XYZ colour space to linear RGB space) simply inverse the result.
/// This scan be done with [`inversed_copy`] function.
///
/// Finally, the columns of the result are XYZ coordinates of the primaries.  To
/// get the primaries oriented in rows [`transposed_copy`] function can be used.
///
/// # Example
///
/// ```
/// use rgb_derivation::*;
///
/// let white = Chromaticity::new(1.0_f32 / 3.0, 1.0 / 3.0).unwrap();
/// let primaries = [
///     Chromaticity::new(0.735_f32, 0.265_f32).unwrap(),
///     Chromaticity::new(0.274_f32, 0.717_f32).unwrap(),
///     Chromaticity::new(0.167_f32, 0.009_f32).unwrap(),
/// ];
///
/// let matrix    = matrix::calculate(&white.to_xyz(), &primaries).unwrap();
/// let inverse   = matrix::inversed_copy(&matrix).unwrap();
/// let primaries = matrix::transposed_copy(&matrix);
///
/// assert_eq!([
///     [0.4887181,  0.31068033,  0.20060167],
///     [0.17620447, 0.8129847,   0.010810869],
///     [0.0,        0.010204833, 0.98979515],
/// ], matrix);
/// assert_eq!([
///     [ 2.3706737,   -0.9000402,  -0.47063363],
///     [-0.5138849,    1.4253035,   0.08858136],
///     [ 0.005298177, -0.014694944, 1.0093968],
/// ], inverse);
/// assert_eq!([
///     [0.4887181,  0.17620447,  0.0],
///     [0.31068033, 0.8129847,   0.010204833],
///     [0.20060167, 0.010810869, 0.98979515],
/// ], primaries);
/// ```
pub fn calculate<K: Scalar>(
    white: &[K; 3],
    primaries: &[super::Chromaticity<K>; 3],
) -> Result<Matrix<K>, super::Error<K>>
where
    for<'x> &'x K: num_traits::RefNum<K>, {
    if !white[1].is_positive() {
        return Err(super::Error::InvalidWhitePoint(white.clone()));
    }

    // Calculate the transformation matrix as per
    // https://mina86.com/2019/srgb-xyz-matrix/

    // M' = [[R_X/R_Y 1 R_Z/R_Y] [G_X/G_Y 1 G_Z/G_Y] [B_X/B_Y 1 B_Z/B_Y]]^T
    let mut mp = transposed(make_vector(|i| primaries[i].to_xyz()));

    // Y = M′⁻¹ ✕ W
    let inverse_m_prime = inversed_copy(&mp)?;
    let y_fn = |i| dot_product(&inverse_m_prime[i], &white);

    // M = M′ ✕ diag(Y)
    for col in 0..3 {
        let y = y_fn(col);
        for row in 0..3 {
            mp[row][col] *= &y;
        }
    }

    Ok(mp)
}


/// Transposes a 3×3 matrix.  Consumes the argument and returns a new matrix.
///
/// # Example
///
/// ```
/// let primaries = [
///     [0.431, 0.222, 0.020],
///     [0.342, 0.707, 0.130],
///     [0.178, 0.071, 0.939]
/// ];
/// assert_eq!([
///    [0.431, 0.342, 0.178],
///    [0.222, 0.707, 0.071],
///    [0.020, 0.130, 0.939],
/// ], rgb_derivation::matrix::transposed(primaries));
/// ```
pub fn transposed<K>(mut matrix: Matrix<K>) -> Matrix<K> {
    let m = matrix.as_mut_ptr();
    for (i, j) in [(0, 1), (0, 2), (1, 2)].iter().copied() {
        // SAFETY: In each step, i != j therefore matrix[i] and matrix[j]
        // are different rows.
        let (a, b) =
            unsafe { (&mut *m.offset(i as isize), &mut *m.offset(j as isize)) };
        std::mem::swap(&mut a[j], &mut b[i]);
    }
    matrix
}

/// Transposes a 3×3 matrix.  Constructs a new matrix and returns it.
///
/// This is equivalent to [`transposed`] except that it doesn’t consume the
/// argument and returns a new object.
pub fn transposed_copy<K: Clone>(matrix: &Matrix<K>) -> Matrix<K> {
    make_matrix(|i, j| matrix[j][i].clone())
}


/// Returns inversion of a 3✕3 matrix M, i.e. M⁻¹.
///
/// Returns an error if the matrix is non-invertible, i.e. if it’s determinant
/// is zero.
///
/// # Example
///
/// ```
/// let matrix: [[f32; 3]; 3] = [
///     [0.488, 0.310, 0.200],
///     [0.176, 0.812, 0.010],
///     [0.000, 0.010, 0.989],
/// ];
/// assert_eq!([
///     [ 2.3739555,    -0.90051305, -0.4709666],
///     [-0.5146161,     1.4268899,   0.08964035],
///     [ 0.0052033975, -0.014427602, 1.010216],
/// ], rgb_derivation::matrix::inversed_copy(&matrix).unwrap());
/// ```
pub fn inversed_copy<K>(
    matrix: &Matrix<K>,
) -> Result<Matrix<K>, super::Error<K>>
where
    K: Scalar,
    for<'x> &'x K: num_traits::RefNum<K>, {
    let mut comatrix_transposed =
        make_matrix(|row, col| cofactor(matrix, col, row));

    // https://en.wikipedia.org/wiki/Minor_(linear_algebra)#Cofactor_expansion_of_the_determinant
    // Because we transposed the comatrix when we created it, we need to
    // calculate dot product of the first row of the matrix and first *column*
    // of the comatrix.
    let det: K = dot_product_with_column(&matrix[0], &comatrix_transposed, 0);
    if det.is_zero() {
        return Err(super::Error::DegenerateMatrix);
    }

    // https://en.wikipedia.org/wiki/Minor_(linear_algebra)#Inverse_of_a_matrix
    // We’ve already transposed comatrix so now all we have to do is just divide
    // it by the Scalar.
    for row in 0..3 {
        for col in 0..3 {
            comatrix_transposed[row][col] /= &det;
        }
    }
    Ok(comatrix_transposed)
}



/// Constructs a new 3-element array by applying a function to its indices.
fn make_vector<T>(f: impl Fn(usize) -> T) -> [T; 3] { [f(0), f(1), f(2)] }

/// Constructs a new 2-dimensional 3×3 array by applying a function to all of
/// its indices.
fn make_matrix<T>(f: impl Fn(usize, usize) -> T) -> [[T; 3]; 3] {
    make_vector(|r| make_vector(|c| f(r, c)))
}

/// Calculates a dot product of two 3-element vectors.
fn dot_product<K: Scalar>(a: &[K; 3], b: &[K; 3]) -> K
where
    for<'x> &'x K: num_traits::RefNum<K>, {
    &a[0] * &b[0] + &a[1] * &b[1] + &a[2] * &b[2]
}

/// Calculates a dot product of a 3-element vectors and a column in a matrix.
fn dot_product_with_column<K>(a: &[K; 3], b: &Matrix<K>, col: usize) -> K
where
    K: Scalar,
    for<'x> &'x K: num_traits::RefNum<K>, {
    &a[0] * &b[0][col] + &a[1] * &b[1][col] + &a[2] * &b[2][col]
}


/// Returns a cofactor of a 3✕3 matrix M, i.e. C_{row,col}.
fn cofactor<K: Scalar>(matrix: &Matrix<K>, row: usize, col: usize) -> K
where
    for<'x> &'x K: num_traits::RefNum<K>, {
    let rr = ((row == 0) as usize, 2 - (row == 2) as usize);
    let cc = ((col == 0) as usize, 2 - (col == 2) as usize);
    let ad = &matrix[rr.0][cc.0] * &matrix[rr.1][cc.1];
    let bc = &matrix[rr.1][cc.0] * &matrix[rr.0][cc.1];
    let minor = ad - bc;
    if (row ^ col) & 1 == 0 {
        minor
    } else {
        -minor
    }
}


#[test]
fn test_transpose() {
    let matrix: Matrix<u64> = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
    assert_eq!([[1, 4, 7], [2, 5, 8], [3, 6, 9]], transposed_copy(&matrix));

    let matrix: Matrix<u64> = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
    assert_eq!([[1, 4, 7], [2, 5, 8], [3, 6, 9]], transposed(matrix));
}

#[test]
fn test_inverse_floats() {
    assert_eq!(
        Ok([
            [3.240812809834622, -1.5373086942720335, -0.49858660478241557],
            [-0.9692430382347864, 1.8759663312198533, 0.04155504934405438],
            [
                0.05563834281000593,
                -0.20400734898293651,
                1.0571294977107015
            ]
        ]),
        inversed_copy(&[
            [0.4124108, 0.35758457, 0.18045382],
            [0.21264932, 0.71516913, 0.07218152],
            [0.019331757, 0.119194806, 0.9503901],
        ])
    );
}

#[cfg(test)]
fn run_inverse_ratio_test<K>(f: &impl Fn((i64, i64)) -> K)
where
    K: Scalar + std::fmt::Debug,
    for<'x> &'x K: num_traits::RefNum<K>, {
    assert_eq!(
        Ok([
            [
                f((4277208, 1319795)),
                f((-2028932, 1319795)),
                f((-658032, 1319795))
            ],
            [
                f((-70985202, 73237775)),
                f((137391598, 73237775)),
                f((3043398, 73237775))
            ],
            [
                f((164508, 2956735)),
                f((-603196, 2956735)),
                f((3125652, 2956735))
            ]
        ]),
        inversed_copy(&[
            [
                f((4223344, 10240623)),
                f((14647555, 40962492)),
                f((14783675, 81924984))
            ],
            [
                f((2903549, 13654164)),
                f((14647555, 20481246)),
                f((2956735, 40962492))
            ],
            [
                f((263959, 13654164)),
                f((14647555, 122887476)),
                f((233582065, 245774952))
            ],
        ])
    );
}

#[test]
fn test_inverses_ratio() { run_inverse_ratio_test(&super::test::new_ratio); }

#[test]
fn test_inverses_big_ratio() {
    run_inverse_ratio_test(&super::test::new_big_ratio);
}