1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
// RGB Core Library: consensus layer for RGB smart contracts.
//
// SPDX-License-Identifier: Apache-2.0
//
// Written in 2019-2023 by
// Dr Maxim Orlovsky <orlovsky@lnp-bp.org>
//
// Copyright (C) 2019-2023 LNP/BP Standards Association. All rights reserved.
// Copyright (C) 2019-2023 Dr Maxim Orlovsky. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::{BTreeMap, BTreeSet, VecDeque};
use bp::seals::txout::{TxPtr, Witness};
use bp::{dbc, Tx, Txid};
use commit_verify::mpc;
use single_use_seals::SealWitness;
use super::status::{Failure, Warning};
use super::{ConsignmentApi, Status, Validity, VirtualMachine};
use crate::vm::AluRuntime;
use crate::{
AltLayer1, Anchor, AnchoredBundle, BundleId, ContractId, GraphSeal, Layer1, OpId, OpRef,
Operation, Opout, Schema, SchemaId, SchemaRoot, Script, SealDefinition, SubSchema, Transition,
TransitionBundle, TypedAssigns,
};
#[derive(Clone, Debug, Display, Error, From)]
#[display(doc_comments)]
pub enum TxResolverError {
/// transaction {0} is not mined
Unknown(Txid),
/// unable to retriev transaction {0}, {1}
Other(Txid, String),
}
pub trait ResolveTx {
fn resolve_tx(&self, layer1: Layer1, txid: Txid) -> Result<Tx, TxResolverError>;
}
pub struct Validator<'consignment, 'resolver, C: ConsignmentApi, R: ResolveTx> {
consignment: &'consignment C,
status: Status,
schema_id: SchemaId,
genesis_id: OpId,
contract_id: ContractId,
layers1: BTreeSet<Layer1>,
anchor_index: BTreeMap<OpId, &'consignment Anchor>,
end_transitions: Vec<(&'consignment Transition, BundleId)>,
validation_index: BTreeSet<OpId>,
anchor_validation_index: BTreeSet<OpId>,
vm: Box<dyn VirtualMachine + 'consignment>,
resolver: &'resolver R,
}
impl<'consignment, 'resolver, C: ConsignmentApi, R: ResolveTx>
Validator<'consignment, 'resolver, C, R>
{
fn init(consignment: &'consignment C, resolver: &'resolver R) -> Self {
// We use validation status object to store all detected failures and
// warnings
let mut status = Status::default();
// Frequently used computation-heavy data
let genesis = consignment.genesis();
let genesis_id = genesis.id();
let contract_id = genesis.contract_id();
let schema_id = genesis.schema_id;
// Create indexes
let mut anchor_index = BTreeMap::<OpId, &Anchor>::new();
for AnchoredBundle {
ref anchor,
ref bundle,
} in consignment.anchored_bundles()
{
if !TransitionBundle::validate(bundle) {
status.add_failure(Failure::BundleInvalid(bundle.bundle_id()));
}
for transition in bundle.values().filter_map(|item| item.transition.as_ref()) {
let opid = transition.id();
anchor_index.insert(opid, anchor);
}
}
// Collect all endpoint transitions.
// This is pretty simple operation; it takes a lot of code because we would like
// to detect any potential issues with the consignment structure and notify user
// about them (in form of generated warnings)
let mut end_transitions = Vec::<(&Transition, BundleId)>::new();
for (bundle_id, seal_endpoint) in consignment.terminals() {
let Some(transitions) = consignment.known_transitions_by_bundle_id(bundle_id) else {
status.add_failure(Failure::BundleInvalid(bundle_id));
continue;
};
for transition in transitions {
let opid = transition.id();
// Checking for endpoint definition duplicates
if !transition
.assignments
.values()
.flat_map(TypedAssigns::to_confidential_seals)
.any(|seal| seal == seal_endpoint)
{
// We generate just a warning here because it's up to a user to decide whether
// to accept consignment with wrong endpoint list
status.add_warning(Warning::TerminalSealAbsent(opid, seal_endpoint));
}
if end_transitions.iter().all(|(n, _)| n.id() != opid) {
end_transitions.push((transition, bundle_id));
}
}
}
// Validation index is used to check that all transitions presented in the
// consignment were validated. Also, we use it to avoid double schema
// validations for transitions.
let validation_index = BTreeSet::<OpId>::new();
// Index used to avoid repeated validations of the same anchor+transition pairs
let anchor_validation_index = BTreeSet::<OpId>::new();
let mut layers1 = bset! { Layer1::Bitcoin };
layers1.extend(genesis.alt_layers1.iter().map(AltLayer1::layer1));
let vm = match &consignment.schema().script {
Script::AluVM(lib) => {
Box::new(AluRuntime::new(lib)) as Box<dyn VirtualMachine + 'consignment>
}
};
Self {
consignment,
status,
schema_id,
genesis_id,
contract_id,
layers1,
anchor_index,
end_transitions,
validation_index,
anchor_validation_index,
vm,
resolver,
}
}
/// Validation procedure takes a schema object, root schema (if any),
/// resolver function returning transaction and its fee for a given
/// transaction id, and returns a validation object listing all detected
/// failures, warnings and additional information.
///
/// When a failure detected, it not stopped; the failure is is logged into
/// the status object, but the validation continues for the rest of the
/// consignment data. This can help it debugging and detecting all problems
/// with the consignment.
pub fn validate(consignment: &'consignment C, resolver: &'resolver R, testnet: bool) -> Status {
let mut validator = Validator::init(consignment, resolver);
validator.validate_schema(consignment.schema());
// If the network mismatches there is no point in validating the contract since
// all witness transactions will be missed. Thus, we return early (however after
// schema validation, which is not network-specific).
if testnet != validator.consignment.genesis().testnet {
validator
.status
.add_failure(Failure::NetworkMismatch(testnet));
return validator.status;
}
// We must return here, since if the schema is not valid there is no reason to
// validate contract nodes against it: it will produce a plenty of errors
if validator.status.validity() == Validity::Invalid {
return validator.status;
}
validator.validate_contract(consignment.schema());
// Done. Returning status report with all possible failures, issues, warnings
// and notifications about transactions we were unable to obtain.
validator.status
}
fn validate_schema(&mut self, schema: &SubSchema) { self.status += schema.verify(); }
fn validate_contract<Root: SchemaRoot>(&mut self, schema: &Schema<Root>) {
// [VALIDATION]: Making sure that we were supplied with the schema
// that corresponds to the schema of the contract genesis
if schema.schema_id() != self.schema_id {
self.status.add_failure(Failure::SchemaMismatch {
expected: self.schema_id,
actual: schema.schema_id(),
});
// Unlike other failures, here we return immediately, since there is no point
// to validate all consignment data against an invalid schema: it will result in
// a plenty of meaningless errors
return;
}
// [VALIDATION]: Validate genesis
self.status += schema.validate(
self.consignment,
OpRef::Genesis(self.consignment.genesis()),
self.vm.as_ref(),
);
self.validation_index.insert(self.genesis_id);
// [VALIDATION]: Iterating over each endpoint, reconstructing operation
// graph up to genesis for each one of them.
// NB: We are not aiming to validate the consignment as a whole, but instead
// treat it as a superposition of subgraphs, one for each endpoint; and validate
// them independently.
for (operation, bundle_id) in self.end_transitions.clone() {
self.validate_branch(schema, operation, bundle_id);
}
// Replace missed (not yet mined) endpoint witness transaction failures
// with a dedicated type
for (operation, _) in &self.end_transitions {
if let Some(anchor) = self.anchor_index.get(&operation.id()) {
let anchor = match anchor {
Anchor::Bitcoin(anchor) | Anchor::Liquid(anchor) => anchor,
};
if let Some(pos) = self
.status
.failures
.iter()
.position(|f| f == &Failure::SealNoWitnessTx(anchor.txid))
{
self.status.failures.remove(pos);
self.status
.unresolved_txids
.retain(|txid| *txid != anchor.txid);
self.status.unmined_terminals.push(anchor.txid);
self.status
.warnings
.push(Warning::TerminalWitnessNotMined(anchor.txid));
}
}
}
// Generate warning if some of the transitions within the consignment were
// excessive (i.e. not part of validation_index). Nothing critical, but still
// good to report the user that the consignment is not perfect
for opid in self.consignment.op_ids_except(&self.validation_index) {
self.status.add_warning(Warning::ExcessiveOperation(opid));
}
}
fn validate_branch<Root: SchemaRoot>(
&mut self,
schema: &Schema<Root>,
transition: &'consignment Transition,
bundle_id: BundleId,
) {
let mut queue: VecDeque<OpRef> = VecDeque::new();
// Instead of constructing complex graph structures or using a recursions we
// utilize queue to keep the track of the upstream (ancestor) nodes and make
// sure that ve have validated each one of them up to genesis. The graph is
// valid when each of its nodes and each of its edges is valid, i.e. when all
// individual nodes has passed validation against the schema (we track
// that fact with `validation_index`) and each of the operation ancestor state
// change to a given operation is valid against the schema + committed
// into bitcoin transaction graph with proper anchor. That is what we are
// checking in the code below:
queue.push_back(OpRef::Transition(transition));
while let Some(operation) = queue.pop_front() {
let opid = operation.id();
// [VALIDATION]: Verify operation against the schema and scripts
if !self.validation_index.contains(&opid) {
self.status += schema.validate(self.consignment, operation, self.vm.as_ref());
self.validation_index.insert(opid);
}
match operation {
OpRef::Genesis(_) => {
// nothing to add to the queue here
}
OpRef::Transition(transition) => {
// Making sure we do have a corresponding anchor; otherwise reporting failure
// (see below) - with the except of genesis and extension nodes, which does not
// have a corresponding anchor
if let Some(anchor) = self.anchor_index.get(&opid).cloned() {
if !self.anchor_validation_index.contains(&opid) {
// Ok, now we have the `operation` and the `anchor`, let's do all
// required checks
// [VALIDATION]: Check that transition is committed into the anchor.
// This must be done with deterministic bitcoin
// commitments & LNPBP-4.
if anchor.convolve(self.contract_id, bundle_id.into()).is_err() {
self.status.add_failure(Failure::NotInAnchor(opid));
}
self.validate_transition(transition, bundle_id, anchor);
self.anchor_validation_index.insert(opid);
}
} else {
// If we've got here there is something broken with the consignment
// provider.
self.status.add_failure(Failure::NotAnchored(opid));
}
// Now, we must collect all parent nodes and add them to the verification queue
let parent_nodes = transition.inputs.iter().filter_map(|input| {
self.consignment.operation(input.prev_out.op).or_else(|| {
// This will not actually happen since we already checked that each
// ancestor reference has a corresponding operation in the code above.
// But lets double-check :)
self.status
.add_failure(Failure::TransitionAbsent(input.prev_out.op));
None
})
});
queue.extend(parent_nodes);
}
OpRef::Extension(extension) => {
for (valency, prev_id) in &extension.redeemed {
let Some(prev_op) = self.consignment.operation(*prev_id) else {
self.status.add_failure(Failure::ValencyNoParent {
opid,
prev_id: *prev_id,
valency: *valency,
});
continue;
};
if !prev_op.valencies().contains(valency) {
self.status.add_failure(Failure::NoPrevValency {
opid,
prev_id: *prev_id,
valency: *valency,
});
continue;
}
queue.push_back(prev_op);
}
}
}
}
}
fn validate_transition(
&mut self,
transition: &'consignment Transition,
bundle_id: BundleId,
anchor: &'consignment Anchor,
) {
let (layer1, anchor) = match anchor {
Anchor::Bitcoin(a) | Anchor::Liquid(a) => (anchor.layer1(), a),
};
let txid = anchor.txid;
// Check that the anchor is committed into a transaction spending all of the
// transition inputs.
match self.resolver.resolve_tx(layer1, txid) {
Err(_) => {
// We wre unable to retrieve corresponding transaction, so can't check.
// Reporting this incident and continuing further. Why this happens? No
// connection to Bitcoin Core, Electrum or other backend etc. So this is not a
// failure in a strict sense, however we can't be sure that the consignment is
// valid. That's why we keep the track of such information in a separate place
// (`unresolved_txids` field of the validation status object).
self.status.unresolved_txids.push(txid);
// This also can mean that there is no known transaction with the id provided by
// the anchor, i.e. consignment is invalid. We are proceeding with further
// validation in order to detect the rest of problems (and reporting the
// failure!)
self.status.add_failure(Failure::SealNoWitnessTx(txid));
}
Ok(witness_tx) => {
let witness = Witness::with(witness_tx, anchor.clone());
self.validate_witness(transition, witness, bundle_id, anchor)
}
}
}
fn validate_witness(
&mut self,
transition: &'consignment Transition,
witness: Witness,
bundle_id: BundleId,
anchor: &'consignment dbc::Anchor<mpc::MerkleProof>,
) {
let opid = transition.id();
let txid = witness.txid;
// Checking that witness transaction closes seals defined by transition previous
// outputs.
let mut seals = vec![];
for input in &transition.inputs {
let Opout { op, ty, no } = input.prev_out;
let Some(prev_op) = self.consignment.operation(op) else {
// Node, referenced as the ancestor, was not found in the consignment.
// Usually this means that the consignment data are broken
self.status.add_failure(Failure::OperationAbsent(op));
continue;
};
let Some(variant) = prev_op.assignments_by_type(ty) else {
self.status.add_failure(Failure::NoPrevState {
opid,
prev_id: op,
state_type: ty,
});
continue;
};
let Ok(seal) = variant.revealed_seal_at(no) else {
self.status
.add_failure(Failure::NoPrevOut(opid, input.prev_out));
continue;
};
let Some(seal) = seal else {
// Everything is ok, but we have incomplete data (confidential), thus can't do a
// full verification and have to report the failure
self.status
.add_failure(Failure::ConfidentialSeal(input.prev_out));
continue;
};
let Some(anchor) = self.anchor_index.get(&op) else {
panic!("anchor for the operation {op} was not indexed by the validator");
};
if seal.layer1() != anchor.layer1() {
self.status.add_failure(Failure::SealWitnessLayer1Mismatch {
seal: seal.layer1(),
anchor: anchor.layer1(),
});
continue;
}
if !self.layers1.contains(&seal.layer1()) {
self.status
.add_failure(Failure::SealInvalidLayer1(seal.layer1(), seal));
continue;
}
let seal = match (seal, anchor) {
(
SealDefinition::Bitcoin(
seal @ GraphSeal {
txid: TxPtr::WitnessTx,
..
},
) |
SealDefinition::Liquid(
seal @ GraphSeal {
txid: TxPtr::WitnessTx,
..
},
),
Anchor::Bitcoin(anchor) | Anchor::Liquid(anchor),
) => {
let prev_witness_txid = anchor.txid;
seal.resolve(prev_witness_txid)
}
(
SealDefinition::Bitcoin(
seal @ GraphSeal {
txid: TxPtr::Txid(txid),
..
},
) |
SealDefinition::Liquid(
seal @ GraphSeal {
txid: TxPtr::Txid(txid),
..
},
),
Anchor::Bitcoin(_) | Anchor::Liquid(_),
) => seal.resolve(txid),
};
seals.push(seal);
}
let message = mpc::Message::from(bundle_id);
match anchor.convolve(self.contract_id, message) {
Err(_) => {
self.status.add_failure(Failure::MpcInvalid(opid, txid));
}
Ok(commitment) => {
// [VALIDATION]: CHECKING SINGLE-USE-SEALS
witness
.verify_many_seals(&seals, &commitment)
.map_err(|err| {
self.status
.add_failure(Failure::SealInvalid(opid, txid, err));
})
.ok();
}
}
// [VALIDATION]: Checking anchor deterministic bitcoin commitment
if let Err(err) = anchor.verify(self.contract_id, message, &witness.tx) {
// The operation is not committed to bitcoin transaction graph!
// Ultimate failure. But continuing to detect the rest (after reporting it).
self.status
.add_failure(Failure::AnchorInvalid(opid, txid, err));
}
}
}