1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
use std::ops;
use crate::{
    math::{
        vec3::*,
        quat::*,
    }
};
use crate::math::mat3::Mat3;

#[derive(Copy, Clone, Debug)]
pub struct Mat4 {
    pub f: [f32; 16]
}

impl Default for Mat4 {
    fn default() -> Self {
        Mat4::IDENTITY
    }
}

impl Mat4 {
    pub const IDENTITY: Self = Self {
        f: [1.0, 0.0, 0.0, 0.0,
            0.0, 1.0, 0.0, 0.0,
            0.0, 0.0, 1.0, 0.0,
            0.0, 0.0, 0.0, 1.0]
    };

    pub fn scale(v: Vec3) -> Self {
        Self {
            f: [v.x, 0.0, 0.0, 0.0,
                0.0, v.y, 0.0, 0.0,
                0.0, 0.0, v.z, 0.0,
                0.0, 0.0, 0.0, 1.0]
        }
    }

    pub fn translate(v: Vec3) -> Self {
        Self {
            f: [1.0, 0.0, 0.0, 0.0,
                0.0, 1.0, 0.0, 0.0,
                0.0, 0.0, 1.0, 0.0,
                v.x, v.y, v.z, 1.0]
        }
    }

    pub fn ortho(left: f32, right: f32, bottom: f32, top: f32, z_near: f32, z_far: f32) -> Self {
        Self {
            f: [
                2.0 / (right - left), 0.0, 0.0, 0.0,
                0.0, 2.0 / (top - bottom), 0.0, 0.0,
                0.0, 0.0, 1.0 / (z_far - z_near), 0.0,
                (left + right) / (left - right), (top + bottom) / (bottom - top),
                z_near / (z_near - z_far), 1.0]
        }
    }

    pub fn perspective(fov_rad: f32, aspect: f32, z_near: f32, z_far: f32) -> Self {
        let y_scale = 1.0 / (fov_rad * 0.5).tan();
        let x_scale = y_scale / aspect;

        Self {
            f: [
                x_scale, 0.0, 0.0, 0.0,
                0.0, y_scale, 0.0, 0.0,
                0.0, 0.0, z_far / (z_near - z_far), -1.0,
                0.0, 0.0, z_near * z_far / (z_near - z_far), 0.0
            ]
        }
    }

    pub fn basis(&self) -> Mat3 {
        Mat3 {
            f: [self.f[0], self.f[1], self.f[2],
                self.f[4], self.f[5], self.f[6],
                self.f[8], self.f[9], self.f[10]]
        }
    }

    pub fn from_quat(q: Quat) -> Self {
        let s = 2.0 / q.sqr_len();

        let xs = q.x * s;
        let ys = q.y * s;
        let zs = q.z * s;

        let wx = q.w * xs;
        let wy = q.w * ys;
        let wz = q.w * zs;

        let xx = q.x * xs;
        let xy = q.x * ys;
        let xz = q.x * zs;

        let yy = q.y * ys;
        let yz = q.y * zs;
        let zz = q.z * zs;

        Self {
            f: {
                [1.0 - (yy + zz), xy + wz, xz - wy, 0.0,
                    xy - wz, 1.0 - (xx + zz), yz + wx, 0.0,
                    xz + wy, yz - wx, 1.0 - (xx + yy), 0.0,
                    0.0, 0.0, 0.0, 1.0]
            }
        }
    }

    pub fn look_at(eye: Vec3, at: Vec3, up: Vec3) -> Option<Mat4> {
        let zaxis = (eye - at).normalized()?;
        let xaxis = up.cross(&zaxis).normalized()?;
        let yaxis = zaxis.cross(&xaxis).normalized()?;

        Some(Self {
            f: [
                xaxis.x, yaxis.x, zaxis.x, 0.0,
                xaxis.y, yaxis.y, zaxis.y, 0.0,
                xaxis.z, yaxis.z, zaxis.z, 0.0,
                -xaxis.dot(&eye), -yaxis.dot(&eye), -zaxis.dot(&eye), 1.0,
            ]
        })
    }

    /// Returns Ok(inverted_matrix) in case if matrix is invertible,
    /// or Err(()) if matrix has determinant == 0 and so not invertible.
    pub fn inverse(&self) -> Result<Mat4, ()> {
        let f = &self.f;
        let mut temp = Mat4 {
            f: [
                f[5] * f[10] * f[15] - f[5] * f[14] * f[11] - f[6] * f[9] * f[15] + f[6] * f[13] * f[11] + f[7] * f[9] * f[14] - f[7] * f[13] * f[10],
                -f[1] * f[10] * f[15] + f[1] * f[14] * f[11] + f[2] * f[9] * f[15] - f[2] * f[13] * f[11] - f[3] * f[9] * f[14] + f[3] * f[13] * f[10],
                f[1] * f[6] * f[15] - f[1] * f[14] * f[7] - f[2] * f[5] * f[15] + f[2] * f[13] * f[7] + f[3] * f[5] * f[14] - f[3] * f[13] * f[6],
                -f[1] * f[6] * f[11] + f[1] * f[10] * f[7] + f[2] * f[5] * f[11] - f[2] * f[9] * f[7] - f[3] * f[5] * f[10] + f[3] * f[9] * f[6],
                -f[4] * f[10] * f[15] + f[4] * f[14] * f[11] + f[6] * f[8] * f[15] - f[6] * f[12] * f[11] - f[7] * f[8] * f[14] + f[7] * f[12] * f[10],
                f[0] * f[10] * f[15] - f[0] * f[14] * f[11] - f[2] * f[8] * f[15] + f[2] * f[12] * f[11] + f[3] * f[8] * f[14] - f[3] * f[12] * f[10],
                -f[0] * f[6] * f[15] + f[0] * f[14] * f[7] + f[2] * f[4] * f[15] - f[2] * f[12] * f[7] - f[3] * f[4] * f[14] + f[3] * f[12] * f[6],
                f[0] * f[6] * f[11] - f[0] * f[10] * f[7] - f[2] * f[4] * f[11] + f[2] * f[8] * f[7] + f[3] * f[4] * f[10] - f[3] * f[8] * f[6],
                f[4] * f[9] * f[15] - f[4] * f[13] * f[11] - f[5] * f[8] * f[15] + f[5] * f[12] * f[11] + f[7] * f[8] * f[13] - f[7] * f[12] * f[9],
                -f[0] * f[9] * f[15] + f[0] * f[13] * f[11] + f[1] * f[8] * f[15] - f[1] * f[12] * f[11] - f[3] * f[8] * f[13] + f[3] * f[12] * f[9],
                f[0] * f[5] * f[15] - f[0] * f[13] * f[7] - f[1] * f[4] * f[15] + f[1] * f[12] * f[7] + f[3] * f[4] * f[13] - f[3] * f[12] * f[5],
                -f[0] * f[5] * f[11] + f[0] * f[9] * f[7] + f[1] * f[4] * f[11] - f[1] * f[8] * f[7] - f[3] * f[4] * f[9] + f[3] * f[8] * f[5],
                -f[4] * f[9] * f[14] + f[4] * f[13] * f[10] + f[5] * f[8] * f[14] - f[5] * f[12] * f[10] - f[6] * f[8] * f[13] + f[6] * f[12] * f[9],
                f[0] * f[9] * f[14] - f[0] * f[13] * f[10] - f[1] * f[8] * f[14] + f[1] * f[12] * f[10] + f[2] * f[8] * f[13] - f[2] * f[12] * f[9],
                -f[0] * f[5] * f[14] + f[0] * f[13] * f[6] + f[1] * f[4] * f[14] - f[1] * f[12] * f[6] - f[2] * f[4] * f[13] + f[2] * f[12] * f[5],
                f[0] * f[5] * f[10] - f[0] * f[9] * f[6] - f[1] * f[4] * f[10] + f[1] * f[8] * f[6] + f[2] * f[4] * f[9] - f[2] * f[8] * f[5],
            ]
        };

        let mut det = f[0] * temp.f[0] + f[4] * temp.f[1] + f[8] * temp.f[2] + f[12] * temp.f[3];
        if det.abs() >= std::f32::EPSILON {
            det = 1.0 / det;
            for i in 0..16 {
                temp.f[i] *= det;
            }
            return Ok(temp);
        }

        Err(())
    }

    pub fn transform_vector(&self, v: Vec3) -> Vec3 {
        Vec3 {
            x: v.x * self.f[0] + v.y * self.f[4] + v.z * self.f[8] + self.f[12],
            y: v.x * self.f[1] + v.y * self.f[5] + v.z * self.f[9] + self.f[13],
            z: v.x * self.f[2] + v.y * self.f[6] + v.z * self.f[10] + self.f[14],
        }
    }

    pub fn transform_vector_normal(&self, v: Vec3) -> Vec3 {
        Vec3 {
            x: v.x * self.f[0] + v.y * self.f[4] + v.z * self.f[8],
            y: v.x * self.f[1] + v.y * self.f[5] + v.z * self.f[9],
            z: v.x * self.f[2] + v.y * self.f[6] + v.z * self.f[10],
        }
    }

    /// Returns "side" vector from basis. (points right)
    pub fn side(&self) -> Vec3 {
        Vec3::new(self.f[0], self.f[1], self.f[2])
    }

    /// Returns "up" vector from basis.
    pub fn up(&self) -> Vec3 {
        Vec3::new(self.f[4], self.f[5], self.f[6])
    }

    /// Returns "look" vector from basis. (points into screen)
    pub fn look(&self) -> Vec3 {
        Vec3::new(self.f[8], self.f[9], self.f[10])
    }

    /// Returns translation part of matrix.
    pub fn position(&self) -> Vec3 {
        Vec3::new(self.f[12], self.f[13], self.f[14])
    }
}

impl ops::Mul<Self> for Mat4 {
    type Output = Self;
    fn mul(self, b: Self) -> Self {
        Self {
            f: [
                self.f[0] * b.f[0] + self.f[4] * b.f[1] + self.f[8] * b.f[2] + self.f[12] * b.f[3],
                self.f[1] * b.f[0] + self.f[5] * b.f[1] + self.f[9] * b.f[2] + self.f[13] * b.f[3],
                self.f[2] * b.f[0] + self.f[6] * b.f[1] + self.f[10] * b.f[2] + self.f[14] * b.f[3],
                self.f[3] * b.f[0] + self.f[7] * b.f[1] + self.f[11] * b.f[2] + self.f[15] * b.f[3],
                self.f[0] * b.f[4] + self.f[4] * b.f[5] + self.f[8] * b.f[6] + self.f[12] * b.f[7],
                self.f[1] * b.f[4] + self.f[5] * b.f[5] + self.f[9] * b.f[6] + self.f[13] * b.f[7],
                self.f[2] * b.f[4] + self.f[6] * b.f[5] + self.f[10] * b.f[6] + self.f[14] * b.f[7],
                self.f[3] * b.f[4] + self.f[7] * b.f[5] + self.f[11] * b.f[6] + self.f[15] * b.f[7],
                self.f[0] * b.f[8] + self.f[4] * b.f[9] + self.f[8] * b.f[10] + self.f[12] * b.f[11],
                self.f[1] * b.f[8] + self.f[5] * b.f[9] + self.f[9] * b.f[10] + self.f[13] * b.f[11],
                self.f[2] * b.f[8] + self.f[6] * b.f[9] + self.f[10] * b.f[10] + self.f[14] * b.f[11],
                self.f[3] * b.f[8] + self.f[7] * b.f[9] + self.f[11] * b.f[10] + self.f[15] * b.f[11],
                self.f[0] * b.f[12] + self.f[4] * b.f[13] + self.f[8] * b.f[14] + self.f[12] * b.f[15],
                self.f[1] * b.f[12] + self.f[5] * b.f[13] + self.f[9] * b.f[14] + self.f[13] * b.f[15],
                self.f[2] * b.f[12] + self.f[6] * b.f[13] + self.f[10] * b.f[14] + self.f[14] * b.f[15],
                self.f[3] * b.f[12] + self.f[7] * b.f[13] + self.f[11] * b.f[14] + self.f[15] * b.f[15]
            ]
        }
    }
}