1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
use crate::context::Context;
use crate::export::{Export, Result};
use crate::path::Path;
use crate::sensor_id::SensorId;
use crate::slot::Slot;
use crate::vm::vm_status::VMStatus;
use std::str::FromStr;
/// A Round correspond to a local computation in a device. Create the context, evaluate the aggregate program and share the exports to the neighborhood.
///
/// * `context` - The context of the current round.
///
/// * `status` - The status of the current round.
///
/// * `export_stack` - The stack of exports of the current round.
#[derive(Debug, Clone)]
pub struct RoundVM {
context: Context,
status: VMStatus,
export_stack: Vec<Export>,
isolated: bool,
}
impl RoundVM {
/// Create a new RoundVM
///
/// ### Arguments
///
/// * `context` - The context of the current round.
///
/// # Returns
///
/// A `RoundVM` instance.
pub fn new(context: Context) -> Self {
Self {
context,
status: VMStatus::new(),
export_stack: vec![],
isolated: false,
}
}
/// Get the first export of the stack.
///
/// # Returns
///
/// The first export of the stack, of type `&mut Export`.
pub fn export_data(&mut self) -> &mut Export {
self.export_stack.first_mut().unwrap()
}
/// # Returns
///
/// The id of the device, of type `i32`.
pub fn self_id(&self) -> &i32 {
self.context.self_id()
}
/// Register the given value for the root path.
///
/// # Arguments
///
/// * `v` - The value to register.
///
/// # Generic Parameters
///
/// * `A` - The type of value. It must implement the `Copy` trait
/// and have a `'static` lifetime.
pub fn register_root<A: 'static + Clone>(&mut self, v: A) {
self.export_data().put(Path::new(), v.clone());
}
/// If the computation is folding on a neighbor, return the id of the neighbor
///
/// # Returns
///
/// An `&Option<i32>` containing the id of the neighbor, if present
pub fn neighbor(&self) -> &Option<i32> {
self.status.neighbour()
}
/// # Returns
///
/// The index of the current computation.
pub fn index(&self) -> i32 {
self.status.index()
}
/// Obtain the value of the previous round for the current device and the current path.
///
/// # Generic Parameters
///
/// * `A` - The type of value. It must implement the `Clone` trait
/// and have a `'static` lifetime.
///
/// # Returns
///
/// An `Option` containing the value of the current path for the current device, if present.
pub fn previous_round_val<A: 'static + Clone + FromStr>(&self) -> Result<A> {
self.context
.read_export_value::<A>(self.self_id(), self.status.path())
}
/// Obtain the value of the current path for the current neighbor
///
/// # Generic Parameters
///
/// * `A` - The type of value. It must implement the `Clone` trait
/// and have a `'static` lifetime.
///
/// # Returns
///
/// An `Option` containing the value of the current path for the current neighbor, if present.
pub fn neighbor_val<A: 'static + Clone + FromStr>(&self) -> Result<A> {
let n: Result<i32> = self.neighbor().ok_or("Isolated".into());
self.context.read_export_value::<A>(&n?, self.status.path())
}
/// Obtain the local value of a given sensor.
///
/// # Arguments
///
/// * - `sensor_id` - The id of the sensor.
///
/// # Generic Parameters
///
/// * `A` - The type of value returned by the sensor. It must have a `'static` lifetime.
///
/// # Returns
///
/// An `Option` containing the local value of the given sensor, if present.
pub fn local_sense<A: 'static>(&self, sensor_id: &SensorId) -> Option<&A> {
self.context.local_sense::<A>(sensor_id)
}
/// Obtain the value of a given sensor for the current neighbor.
///
/// # Arguments
///
/// * `sensor_id` - The id of the sensor.
///
/// # Generic Parameters
///
/// * `A` - The type of value returned by the sensor. It must have a `'static` lifetime.
///
/// # Returns
///
/// An `Option` containing the value of the given sensor for the current neighbor, if present.
pub fn nbr_sense<A: 'static>(&self, sensor_id: &SensorId) -> Option<&A> {
self.neighbor()
.map(|id| self.context.nbr_sense::<A>(sensor_id, &id))
.flatten()
}
/// Evaluates the given expression locally and return the result.
///
/// # Arguments
///
/// * `expr` The expression to evaluate, which takes a [RoundVM] as argument and returns a tuple of `RoundVM` and `A`.
///
/// # Generic Parameters
///
/// * `A` - The type of value returned by the expression.
/// * `F` - The type of the closure, which must be a mutable closure that takes a [RoundVM] as argument and returns a tuple of `RoundVM` and `A`.
///
/// # Returns
///
/// The result of the closure `expr`.
pub fn locally<A: Clone + 'static + FromStr, F>(&mut self, expr: F) -> (RoundVM, A)
where
F: Fn(RoundVM) -> (RoundVM, A),
{
let mut proxy = self.clone();
let current_neighbour = *proxy.neighbor();
proxy.status = proxy.status.fold_out();
let (mut vm_, result) = expr(proxy.clone());
vm_.status = vm_.status.fold_into(current_neighbour);
(vm_, result)
}
/// Perform a folded evaluation of the given expression in the given neighbor and return the result.
///
/// # Arguments
///
/// * `expr` - The expression to evaluate, which takes a [RoundVM] as argument and returns a tuple of `RoundVM` and `A`.
/// * `id` - The id of the neighbor. It is of type `i32`.
///
/// # Generic Parameters
///
/// * `A` - The type of value returned by the expression.
/// * `F` - The type of the expression, which must be a closure that takes a [RoundVM] as argument and returns a tuple of `RoundVM` and `A`.
///
/// # Returns
///
/// An `Option` containing the result of the expression.
pub fn folded_eval<A: Clone + 'static, F>(&mut self, expr: F, id: i32) -> (RoundVM, Option<A>)
where
F: Fn(RoundVM) -> (RoundVM, A),
{
let mut proxy = self.clone();
proxy.status = proxy.status.push();
proxy.status = proxy.status.fold_into(Some(id));
let (mut vm_, result) = expr(proxy.clone());
vm_.status = vm_.status.pop();
(vm_, Some(result))
}
/// Evaluate the given expression while also writing on the [Export] stack.
///
/// # Arguments
///
/// * `slot` - The slot to write in the current [Path].
/// * `write` - A boolean indicating whether to write the result of the expression on the `Export` stack.
/// * `inc` - A boolean indicating whether to increment the index of the current [VMStatus].
/// * `expr` - The expression to evaluate, which takes a [RoundVM] as argument and returns a tuple of `RoundVM` and `A`.
///
/// # Generic Parameters
///
/// * `A` - The type of value returned by the expression.
/// * `F` - The type of the expression, which must be a closure that takes a [RoundVM] as argument and returns a tuple of `RoundVM` and `A`.
///
/// # Returns
///
/// A tuple of `RoundVM` and `A`.
pub fn nest<A: Clone + 'static + FromStr, F>(
&mut self,
slot: Slot,
write: bool,
inc: bool,
expr: F,
) -> (RoundVM, A)
where
F: Fn(RoundVM) -> (RoundVM, A),
{
let mut proxy = self.clone();
proxy.status = proxy.status.push().nest(slot);
let (mut vm, val) = expr(proxy);
let res = if write {
let cloned_path = vm.status.path().clone();
vm.export_data()
.get::<A>(&cloned_path)
.unwrap_or(
vm.export_data()
.put_lazy_and_return(cloned_path, || val.clone()),
)
.clone()
} else {
val
};
vm.status = match inc {
true => vm.status.pop().inc_index(),
false => vm.status.pop(),
};
(vm, res)
}
/// Get a vector of aligned neighbor identifiers.
///
/// # Returns
///
/// A vector of aligned neighbor identifiers.
pub fn aligned_neighbours<A: 'static + FromStr + Clone>(&self) -> Vec<i32> {
let mut tmp: Vec<i32> = Vec::new();
if !self.isolated {
tmp = self
.context
.exports()
.clone()
.into_iter()
.filter(|(id, _)| id != self.self_id())
.filter(|(_, export)| {
self.status.path().is_root() || export.get::<A>(self.status.path()).is_ok()
})
.map(|(id, _)| id)
.collect();
tmp.insert(0, *self.self_id());
}
tmp
}
/// Isolate the current device and evaluate the given expression
///
/// # Arguments
///
/// * `expr` - The closure to execute, which takes a [RoundVM] as argument and returns a tuple of `RoundVM` and `A`.
///
/// # Generic Parameters
///
/// * `A` - The type of value returned by the closure.
/// * `F` - The type of the closure, which must be a mutable closure takes a [RoundVM] as argument and returns a tuple of `RoundVM` and `A`.
///
/// # Returns
///
/// The result of the closure `expr`.
pub fn isolate<A, F>(&mut self, expr: F) -> (RoundVM, A)
where
F: Fn(RoundVM) -> (RoundVM, A),
{
let mut proxy = self.clone();
let was_isolated = proxy.isolated;
proxy.isolated = true;
let (mut vm_, result) = expr(proxy.clone());
vm_.isolated = was_isolated;
(vm_, result)
}
/// Check if folding is not being performed on neighbor.
///
/// # Returns
///
/// - `true` if folding is being performed on self.
/// - `false` if folding is being performed on neighbor.
pub fn unless_folding_on_others(&self) -> bool {
match self.neighbor() {
Some(neighbor) => neighbor == self.self_id(),
None => true,
}
}
/// Check if folding is being performed on self.
///
/// # Returns
///
/// - `true` if folding is being performed on self.
/// - `false` otherwise.
pub fn only_when_folding_on_self(&self) -> bool {
match self.neighbor() {
Some(neighbor) => neighbor == self.self_id(),
_ => false,
}
}
pub fn context(&self) -> &Context {
&self.context
}
/// Create a new export stack with an empty [Export]. This function needs to be called when a new
/// [RoundVM] is created.
pub fn new_export_stack(&mut self) {
self.export_stack.push(Export::new())
}
}
#[cfg(test)]
mod tests {
use crate::context::Context;
use crate::export;
use crate::export::Export;
use crate::path;
use crate::path::Path;
use crate::sensor_id::{sensor, SensorId};
use crate::slot::Slot::{Nbr, Rep};
use crate::vm::round_vm::RoundVM;
use crate::vm::vm_status::VMStatus;
use std::any::Any;
use std::collections::HashMap;
use std::rc::Rc;
fn round_vm_builder() -> RoundVM {
let local_sensor =
HashMap::from([(sensor("sensor1"), Rc::new(Box::new(10) as Box<dyn Any>))]);
let nbr_sensor = HashMap::from([(
sensor("sensor1"),
HashMap::from([(0, Rc::new(Box::new(4) as Box<dyn Any>))]),
)]);
let exports = HashMap::from([
(
7,
/*Export::from(HashMap::from([(
Path::from(vec![Rep(0), Nbr(0)]),
Box::new(10) as Box<dyn Any>,
)]))*/
export!((path!(Nbr(0), Rep(0)), 10)),
),
(
0,
/*Export::from(HashMap::from([(
Path::from(vec![Rep(0), Nbr(0)]),
Box::new(2) as Box<dyn Any>,
)]))*/
export!((path!(Nbr(0), Rep(0)), 2)),
),
]);
let context = Context::new(7, local_sensor, nbr_sensor, exports);
let mut vm = RoundVM::new(context);
vm.export_stack.push(export!((Path::new(), 0)));
let status = VMStatus::new();
vm.status = status.fold_into(Some(0));
vm
}
fn expr(vm: RoundVM) -> (RoundVM, i32) {
(vm, 5 * 3)
}
#[test]
fn test_export_data() {
let mut vm = round_vm_builder();
assert_eq!(vm.export_data().root::<i32>(), 0)
}
#[test]
fn test_register_root() {
let mut vm = round_vm_builder();
vm.register_root(5 * 3);
assert_eq!(vm.export_data().root::<i32>(), 15)
}
#[test]
fn test_folded_eval() {
let mut vm = round_vm_builder();
let result = vm.folded_eval(expr, 7);
assert_eq!(round_vm_builder().status, vm.status);
assert_eq!(result.1.unwrap(), 15)
}
#[test]
fn test_previous_round_val() {
let mut vm = round_vm_builder();
vm.status = vm.status.nest(Rep(0)).nest(Nbr(0));
assert_eq!(vm.previous_round_val::<i32>().unwrap(), 10)
}
#[test]
fn test_neighbor_val() {
let mut vm = round_vm_builder();
vm.status = vm.status.nest(Rep(0)).nest(Nbr(0));
assert_eq!(vm.neighbor_val::<i32>().unwrap(), 2)
}
#[test]
fn test_local_sense() {
let vm = round_vm_builder();
assert_eq!(
vm.local_sense::<i32>(&SensorId::new("sensor1".to_string()))
.unwrap(),
&10
)
}
#[test]
fn test_nbr_sense() {
let vm = round_vm_builder();
assert_eq!(
vm.nbr_sense::<i32>(&SensorId::new("sensor1".to_string()))
.unwrap(),
&4
)
}
#[test]
fn test_aligned_neighbours() {
let vm = round_vm_builder();
assert_eq!(vm.aligned_neighbours::<i32>(), vec![7, 0])
}
#[test]
fn test_isolate() {
let mut vm = round_vm_builder();
let was_isolated = vm.isolated.clone();
let result = vm.isolate(|vm| (vm, 5 * 3));
assert_eq!(vm.isolated, was_isolated);
assert_eq!(result.1, 15)
}
#[test]
fn test_unless_folding_on_others() {
let mut vm = round_vm_builder();
assert!(!vm.unless_folding_on_others());
vm.status = vm.status.fold_into(None);
assert!(vm.unless_folding_on_others());
vm.status = vm.status.fold_into(Some(7));
assert!(vm.unless_folding_on_others());
}
#[test]
fn test_only_when_folding_on_self() {
let mut vm = round_vm_builder();
assert!(!vm.only_when_folding_on_self());
vm.status = vm.status.fold_into(None);
assert!(!vm.only_when_folding_on_self());
vm.status = vm.status.fold_into(Some(7));
assert!(vm.only_when_folding_on_self());
}
}