rex/
queue.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#![allow(dead_code)]

use std::{
    collections::VecDeque,
    pin::Pin,
    sync::{
        atomic::{AtomicBool, Ordering},
        Arc,
    },
    task::{Context, Poll, Waker},
};

use futures::stream::Stream;
use parking_lot::Mutex;

// Contains a waker for a given stream
// as well as a boolean determining whether
// stream has been woken
#[derive(Debug)]
struct ReceiverNotifier {
    handle: Waker,
    awake: Arc<AtomicBool>,
}

// holds inner VecDeque as well as the notification buffer
// letting streams know when polling is ready
// To avoid a "bowtie" effect when consuming
// objects inserted with .push_front and .push_back
// front and back values are separated into their own queue
// so that values are popped in chronological order
// irrespective of priority
// ┌ timestamp value (bigger is younger)
// ^
// │|         |
// │|||     |||
// -|||||||||||
// │|||     |||
// │|         |
// └─────|─────>
//  queue position
struct RawDeque<T> {
    front_values: VecDeque<T>,
    back_values: VecDeque<T>,
    rx_notifiers: VecDeque<ReceiverNotifier>,
}

impl<T> RawDeque<T> {
    const fn new() -> Self {
        Self {
            front_values: VecDeque::new(),
            back_values: VecDeque::new(),
            rx_notifiers: VecDeque::new(),
        }
    }
}

impl<T> RawDeque<T> {
    // waker first receiver to poll for values
    fn notify_rx(&mut self) {
        if let Some(n) = self.rx_notifiers.pop_front() {
            n.handle.wake();
            n.awake.store(true, Ordering::Relaxed);
        }
    }
}

/// This type acts similarly to `std::collections::VecDeque` but
/// modifying queue is async
pub struct StreamableDeque<T> {
    inner: Mutex<RawDeque<T>>,
}

impl<T> std::fmt::Debug for StreamableDeque<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("StreamableDeque { ... }").finish()
    }
}

impl<T> Default for StreamableDeque<T> {
    fn default() -> Self {
        Self {
            inner: Mutex::new(RawDeque::new()),
        }
    }
}

impl<T> StreamableDeque<T> {
    #[must_use]
    pub fn new() -> Self {
        Self::default()
    }

    /// Push an item into the queue and notify first receiver
    pub fn push_front(&self, item: T) {
        let mut inner = self.inner.lock();
        inner.front_values.push_back(item);
        // Notify first receiver in queue
        inner.notify_rx();
    }

    /// Push an item into the back of the queue and notify first receiver
    pub fn push_back(&self, item: T) {
        let mut inner = self.inner.lock();
        inner.back_values.push_back(item);
        // Notify first receiver in queue
        inner.notify_rx();
    }

    /// Returns a stream of items using `pop_front()`
    /// This opens us up to handle a `back_stream()` as well
    pub const fn stream(&self) -> StreamReceiver<T> {
        StreamReceiver {
            queue: self,
            awake: None,
        }
    }

    pub fn pop_front(&self) -> Option<T> {
        let mut inner = self.inner.lock();
        inner
            .front_values
            .pop_front()
            .or_else(|| inner.back_values.pop_front())
    }

    #[cfg(test)]
    pub(crate) fn pop_back(&self) -> Option<T> {
        let mut inner = self.inner.lock();
        inner
            .back_values
            .pop_back()
            .or_else(|| inner.front_values.pop_back())
    }
}

/// A stream of items removed from the priority queue.
pub struct StreamReceiver<'a, T> {
    queue: &'a StreamableDeque<T>,
    awake: Option<Arc<AtomicBool>>,
}

impl<'a, T> Stream for StreamReceiver<'a, T> {
    type Item = T;

    fn poll_next(mut self: Pin<&mut Self>, ctx: &mut Context) -> Poll<Option<Self::Item>> {
        let mut inner = self.queue.inner.lock();

        let value = inner
            .front_values
            .pop_front()
            .or_else(|| inner.back_values.pop_front());

        if let Some(v) = value {
            self.awake = None;
            Poll::Ready(Some(v))
        } else {
            // TODO avoid allocation of a new AtomicBool if possible
            let awake = Arc::new(AtomicBool::new(false));
            // push stream's waker onto buffer
            inner.rx_notifiers.push_back(ReceiverNotifier {
                handle: ctx.waker().clone(),
                awake: awake.clone(),
            });
            self.awake = Some(awake);
            drop(inner);
            Poll::Pending
        }
    }
}

impl<'a, T> Drop for StreamReceiver<'a, T> {
    // if a stream gets dropped, notify next receiver in queue
    fn drop(&mut self) {
        let awake = self.awake.take().map(|w| w.load(Ordering::Relaxed));

        if awake == Some(true) {
            let mut queue_wakers = self.queue.inner.lock();
            // StreamReceiver was woken by a None, notify another
            if let Some(n) = queue_wakers.rx_notifiers.pop_front() {
                n.awake.store(true, Ordering::Relaxed);
                n.handle.wake();
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use futures::stream::StreamExt;

    use super::*;

    #[tokio::test]
    async fn streamable_deque() {
        let queue = Arc::new(StreamableDeque::<i32>::new());

        let pos_queue = queue.clone();
        tokio::spawn(async move {
            for i in 0..=10 {
                pos_queue.push_back(i);
            }
        });

        let neg_queue = queue.clone();
        tokio::spawn(async move {
            for i in -10..=-1 {
                neg_queue.push_front(i);
            }
        });

        let mut rx_vec = vec![];

        let mut stream = queue.stream().enumerate();
        while let Some((i, v)) = stream.next().await {
            rx_vec.push(v);
            if i >= 20 {
                break;
            }
        }

        // we should guarantee that positive and negative numbers have been pushed out of order
        // but push_front and push_back should guarantee that they are sorted
        let expected_vec: Vec<i32> = (-10..=10).collect();
        assert_eq!(expected_vec, rx_vec);
    }
}