1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
use crate::{
    collection::vec::Vec,
    error::{ExitError, ExitFatal},
};
use bytes::Bytes;
use core::{
    cmp::min,
    ops::{BitAnd, Not},
};
use primitive_types::U256;

/// A sequencial memory. It uses Rust's `Vec` for internal
/// representation.
#[derive(Clone, Debug)]
pub struct Memory {
    data: Vec<u8>,
    effective_len: U256,
    limit: usize,
}

impl Memory {
    /// Create a new memory with the given limit.
    pub fn new(limit: usize) -> Self {
        Self {
            data: Vec::new(),
            effective_len: U256::zero(),
            limit,
        }
    }

    /// Memory limit.
    pub fn limit(&self) -> usize {
        self.limit
    }

    /// Get the length of the current memory range.
    pub fn len(&self) -> usize {
        self.data.len()
    }

    /// Get the effective length.
    pub fn effective_len(&self) -> U256 {
        self.effective_len
    }

    /// Return true if current effective memory range is zero.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Return the full memory.
    pub fn data(&self) -> &Vec<u8> {
        &self.data
    }

    /// Resize the memory, making it cover the memory region of `offset..(offset
    /// + len)`, with 32 bytes as the step. If the length is zero, this function
    /// does nothing.
    pub fn resize_offset(&mut self, offset: U256, len: U256) -> Result<u64, ExitError> {
        if len == U256::zero() {
            return Ok(0);
        }

        if let Some(end) = offset.checked_add(len) {
            // Resize the memory, making it cover to `end`, with 32 bytes as the step.
            if end > self.effective_len {
                let new_end = next_multiple_of_32(end).ok_or(ExitError::InvalidRange)?;
                self.effective_len = new_end;
            }
            self.memory_gas(offset, len)
        } else {
            Err(ExitError::InvalidRange)
        }
    }

    // TODO proably can omit some checks but do this later.
    fn memory_gas(&self, from: U256, len: U256) -> Result<u64, ExitError> {
        if len == U256::zero() {
            return Ok(0);
        }

        let end = from.checked_add(len).ok_or(ExitError::OutOfGas)?;

        if end > U256::from(usize::MAX) {
            return Err(ExitError::OutOfGas);
        }
        let end = end.as_usize();

        let rem = end % 32;
        let new = if rem == 0 { end / 32 } else { end / 32 + 1 };

        crate::opcode::gas::memory_gas(new)
    }

    /// Get memory region at given offset.
    ///
    /// ## Panics
    ///
    /// Value of `size` is considered trusted. If they're too large,
    /// the program can run out of memory, or it can overflow.
    pub fn get(&self, offset: usize, size: usize) -> Bytes {
        let mut ret = Vec::new();
        ret.resize(size, 0);

        #[allow(clippy::needless_range_loop)]
        for index in 0..size {
            let position = offset + index;
            if position >= self.data.len() {
                break;
            }

            ret[index] = self.data[position];
        }

        ret.into()
    }

    /// Set memory region at given offset. The offset and value is considered
    /// untrusted.
    pub fn set(
        &mut self,
        offset: usize,
        value: &[u8],
        target_size: Option<usize>,
    ) -> Result<(), ExitFatal> {
        let target_size = target_size.unwrap_or(value.len());
        if target_size == 0 {
            return Ok(());
        }

        if offset
            .checked_add(target_size)
            .map(|pos| pos > self.limit)
            .unwrap_or(true)
        {
            return Err(ExitFatal::NotSupported);
        }

        if self.data.len() < offset + target_size {
            self.data.resize(offset + target_size, 0);
        }

        if target_size > value.len() {
            self.data[offset..((value.len()) + offset)].clone_from_slice(value);
            for index in (value.len())..target_size {
                self.data[offset + index] = 0;
            }
        } else {
            self.data[offset..(target_size + offset)].clone_from_slice(&value[..target_size]);
        }

        Ok(())
    }

    /// Copy `data` into the memory, of given `len`.
    pub fn copy_large(
        &mut self,
        memory_offset: U256,
        data_offset: U256,
        len: U256,
        data: &[u8],
    ) -> Result<(), ExitFatal> {
        // Needed to pass ethereum test defined in
        // https://github.com/ethereum/tests/commit/17f7e7a6c64bb878c1b6af9dc8371b46c133e46d
        // (regardless of other inputs, a zero-length copy is defined to be a no-op).
        // TODO: refactor `set` and `copy_large` (see
        // https://github.com/rust-blockchain/evm/pull/40#discussion_r677180794)
        if len.is_zero() {
            return Ok(());
        }

        let memory_offset = if memory_offset > U256::from(usize::MAX) {
            return Err(ExitFatal::NotSupported);
        } else {
            memory_offset.as_usize()
        };

        let ulen = if len > U256::from(usize::MAX) {
            return Err(ExitFatal::NotSupported);
        } else {
            len.as_usize()
        };

        let data = if let Some(end) = data_offset.checked_add(len) {
            if end > U256::from(usize::MAX) {
                &[]
            } else {
                let data_offset = data_offset.as_usize();
                let end = end.as_usize();

                if data_offset > data.len() {
                    &[]
                } else {
                    &data[data_offset..min(end, data.len())]
                }
            }
        } else {
            &[]
        };

        self.set(memory_offset, data, Some(ulen))
    }
}

/// Rounds up `x` to the closest multiple of 32. If `x % 32 == 0` then `x` is returned.
#[inline]
fn next_multiple_of_32(x: U256) -> Option<U256> {
    let r = x.low_u32().bitand(31).not().wrapping_add(1).bitand(31);
    x.checked_add(r.into())
}

#[cfg(test)]
mod tests {
    use super::{next_multiple_of_32, U256};

    #[test]
    fn test_next_multiple_of_32() {
        // next_multiple_of_32 returns x when it is a multiple of 32
        for i in 0..32 {
            let x = U256::from(i * 32);
            assert_eq!(Some(x), next_multiple_of_32(x));
        }

        // next_multiple_of_32 rounds up to the nearest multiple of 32 when `x % 32 != 0`
        for x in 0..1024 {
            if x % 32 == 0 {
                continue;
            }
            let next_multiple = x + 32 - (x % 32);
            assert_eq!(
                Some(U256::from(next_multiple)),
                next_multiple_of_32(x.into())
            );
        }

        // next_multiple_of_32 returns None when the next multiple of 32 is too big
        let last_multiple_of_32 = U256::MAX & !U256::from(31);
        for i in 0..63 {
            let x = U256::MAX - U256::from(i);
            if x > last_multiple_of_32 {
                assert_eq!(None, next_multiple_of_32(x));
            } else {
                assert_eq!(Some(last_multiple_of_32), next_multiple_of_32(x));
            }
        }
    }
}