pub struct SymmetricTridiagonal<T, D>where
T: ComplexField,
D: DimSub<Const<1>>,
DefaultAllocator: Allocator<D, D> + Allocator<<D as DimSub<Const<1>>>::Output>,{ /* private fields */ }
Expand description
Tridiagonalization of a symmetric matrix.
Implementations§
Source§impl<T, D> SymmetricTridiagonal<T, D>where
T: ComplexField,
D: DimSub<Const<1>>,
DefaultAllocator: Allocator<D, D> + Allocator<<D as DimSub<Const<1>>>::Output>,
impl<T, D> SymmetricTridiagonal<T, D>where
T: ComplexField,
D: DimSub<Const<1>>,
DefaultAllocator: Allocator<D, D> + Allocator<<D as DimSub<Const<1>>>::Output>,
Sourcepub fn new(
m: Matrix<T, D, D, <DefaultAllocator as Allocator<D, D>>::Buffer<T>>,
) -> SymmetricTridiagonal<T, D>
pub fn new( m: Matrix<T, D, D, <DefaultAllocator as Allocator<D, D>>::Buffer<T>>, ) -> SymmetricTridiagonal<T, D>
Computes the tridiagonalization of the symmetric matrix m
.
Only the lower-triangular part (including the diagonal) of m
is read.
Sourcepub fn unpack(
self,
) -> (Matrix<T, D, D, <DefaultAllocator as Allocator<D, D>>::Buffer<T>>, Matrix<<T as ComplexField>::RealField, D, Const<1>, <DefaultAllocator as Allocator<D>>::Buffer<<T as ComplexField>::RealField>>, Matrix<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<<D as DimSub<Const<1>>>::Output>>::Buffer<<T as ComplexField>::RealField>>)
pub fn unpack( self, ) -> (Matrix<T, D, D, <DefaultAllocator as Allocator<D, D>>::Buffer<T>>, Matrix<<T as ComplexField>::RealField, D, Const<1>, <DefaultAllocator as Allocator<D>>::Buffer<<T as ComplexField>::RealField>>, Matrix<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<<D as DimSub<Const<1>>>::Output>>::Buffer<<T as ComplexField>::RealField>>)
Retrieve the orthogonal transformation, diagonal, and off diagonal elements of this decomposition.
Sourcepub fn unpack_tridiagonal(
self,
) -> (Matrix<<T as ComplexField>::RealField, D, Const<1>, <DefaultAllocator as Allocator<D>>::Buffer<<T as ComplexField>::RealField>>, Matrix<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<<D as DimSub<Const<1>>>::Output>>::Buffer<<T as ComplexField>::RealField>>)
pub fn unpack_tridiagonal( self, ) -> (Matrix<<T as ComplexField>::RealField, D, Const<1>, <DefaultAllocator as Allocator<D>>::Buffer<<T as ComplexField>::RealField>>, Matrix<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<<D as DimSub<Const<1>>>::Output>>::Buffer<<T as ComplexField>::RealField>>)
Retrieve the diagonal, and off diagonal elements of this decomposition.
Sourcepub fn diagonal(
&self,
) -> Matrix<<T as ComplexField>::RealField, D, Const<1>, <DefaultAllocator as Allocator<D>>::Buffer<<T as ComplexField>::RealField>>where
DefaultAllocator: Allocator<D>,
pub fn diagonal(
&self,
) -> Matrix<<T as ComplexField>::RealField, D, Const<1>, <DefaultAllocator as Allocator<D>>::Buffer<<T as ComplexField>::RealField>>where
DefaultAllocator: Allocator<D>,
The diagonal components of this decomposition.
Sourcepub fn off_diagonal(
&self,
) -> Matrix<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<<D as DimSub<Const<1>>>::Output>>::Buffer<<T as ComplexField>::RealField>>
pub fn off_diagonal( &self, ) -> Matrix<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<<D as DimSub<Const<1>>>::Output>>::Buffer<<T as ComplexField>::RealField>>
The off-diagonal components of this decomposition.
Trait Implementations§
Source§impl<T, D> Clone for SymmetricTridiagonal<T, D>
impl<T, D> Clone for SymmetricTridiagonal<T, D>
Source§fn clone(&self) -> SymmetricTridiagonal<T, D>
fn clone(&self) -> SymmetricTridiagonal<T, D>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moreSource§impl<T, D> Debug for SymmetricTridiagonal<T, D>
impl<T, D> Debug for SymmetricTridiagonal<T, D>
impl<T, D> Copy for SymmetricTridiagonal<T, D>where
T: ComplexField,
D: DimSub<Const<1>>,
DefaultAllocator: Allocator<D, D> + Allocator<<D as DimSub<Const<1>>>::Output>,
Matrix<T, D, D, <DefaultAllocator as Allocator<D, D>>::Buffer<T>>: Copy,
Matrix<T, <D as DimSub<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<<D as DimSub<Const<1>>>::Output>>::Buffer<T>>: Copy,
Auto Trait Implementations§
impl<T, D> !Freeze for SymmetricTridiagonal<T, D>
impl<T, D> !RefUnwindSafe for SymmetricTridiagonal<T, D>
impl<T, D> !Send for SymmetricTridiagonal<T, D>
impl<T, D> !Sync for SymmetricTridiagonal<T, D>
impl<T, D> !Unpin for SymmetricTridiagonal<T, D>
impl<T, D> !UnwindSafe for SymmetricTridiagonal<T, D>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.