1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
//! Simple resampling library in pure Rust.
//!
//! # Examples
//!
//! ```
//! use resize::Pixel::RGB24;
//! use resize::Type::Lanczos3;
//!
//! // Downscale by 2x.
//! let (w1, h1) = (640, 480);
//! let (w2, h2) = (320, 240);
//! // Don't forget to fill `src` with image data (RGB24).
//! let src = vec![0;w1*h1*3];
//! // Destination buffer. Must be mutable.
//! let mut dst = vec![0;w2*h2*3];
//! // Create reusable instance.
//! let mut resizer = resize::new(w1, h1, w2, h2, RGB24, Lanczos3);
//! // Do resize without heap allocations.
//! // Might be executed multiple times for different `src` or `dst`.
//! resizer.resize(&src, &mut dst);
//! ```
// Current implementation is based on:
// * https://github.com/sekrit-twc/zimg/tree/master/src/zimg/resize
// * https://github.com/PistonDevelopers/image/blob/master/src/imageops/sample.rs
#![deny(missing_docs)]

use std::sync::Arc;
use std::collections::HashMap;
use std::f32;

mod px;
pub use px::*;

/// Resizing type to use.
pub enum Type {
    /// Point resizing.
    Point,
    /// Triangle (bilinear) resizing.
    Triangle,
    /// Catmull-Rom (bicubic) resizing.
    Catrom,
    /// Resize using Mitchell-Netravali filter.
    Mitchell,
    /// Resize using Sinc-windowed Sinc with radius of 3.
    Lanczos3,
    /// Resize with custom filter.
    Custom(Filter),
}

/// Resampling filter.
pub struct Filter {
    kernel: Box<dyn Fn(f32) -> f32>,
    support: f32,
}

impl Filter {
    /// Create a new filter.
    ///
    /// # Examples
    ///
    /// ```
    /// use resize::Filter;
    /// fn kernel(x: f32) -> f32 { f32::max(1.0 - x.abs(), 0.0) }
    /// let filter = Filter::new(Box::new(kernel), 1.0);
    /// ```
    #[must_use]
    pub fn new(kernel: Box<dyn Fn(f32) -> f32>, support: f32) -> Self {
        Self { kernel, support }
    }

    /// Helper to create Cubic filter with custom B and C parameters.
    #[must_use]
    pub fn new_cubic(b: f32, c: f32) -> Self {
        Self::new(Box::new(move |x| cubic_bc(b, c, x)), 2.0)
    }

    /// Helper to create Lanczos filter with custom radius.
    #[must_use]
    pub fn new_lanczos(radius: f32) -> Self {
        Self::new(Box::new(move |x| lanczos(radius, x)), radius)
    }
}

#[inline]
fn point_kernel(_: f32) -> f32 {
    1.0
}

#[inline]
fn triangle_kernel(x: f32) -> f32 {
    f32::max(1.0 - x.abs(), 0.0)
}

// Taken from
// https://github.com/PistonDevelopers/image/blob/2921cd7/src/imageops/sample.rs#L68
// TODO(Kagami): Could be optimized for known B and C, see e.g.
// https://github.com/sekrit-twc/zimg/blob/1a606c0/src/zimg/resize/filter.cpp#L149
#[inline]
fn cubic_bc(b: f32, c: f32, x: f32) -> f32 {
    let a = x.abs();
    let k = if a < 1.0 {
        (12.0 - 9.0 * b - 6.0 * c) * a.powi(3) +
        (-18.0 + 12.0 * b + 6.0 * c) * a.powi(2) +
        (6.0 - 2.0 * b)
    } else if a < 2.0 {
        (-b - 6.0 * c) * a.powi(3) +
        (6.0 * b + 30.0 * c) * a.powi(2) +
        (-12.0 * b - 48.0 * c) * a +
        (8.0 * b + 24.0 * c)
    } else {
        0.0
    };
    k / 6.0
}

#[inline]
fn sinc(x: f32) -> f32 {
    if x == 0.0 {
        1.0
    } else {
        let a = x * f32::consts::PI;
        a.sin() / a
    }
}

#[inline]
fn lanczos(taps: f32, x: f32) -> f32 {
    if x.abs() < taps {
        sinc(x) * sinc(x / taps)
    } else {
        0.0
    }
}

/// Supported pixel formats.
// TODO(Kagami): YUV planes?
#[allow(non_snake_case)]
pub mod Pixel {
    /// Grayscale, 8-bit.
    #[derive(Debug, Clone, Copy)]
    pub struct Gray8;
    /// Grayscale, 16-bit, native endian.
    #[derive(Debug, Clone, Copy)]
    pub struct Gray16;
    /// RGB, 8-bit per component.
    #[derive(Debug, Clone, Copy)]
    pub struct RGB24;
    /// RGB, 16-bit per component, native endian.
    #[derive(Debug, Clone, Copy)]
    pub struct RGB48;
    /// RGBA, 8-bit per component.
    #[derive(Debug, Clone, Copy)]
    pub struct RGBA;
    /// RGBA, 16-bit per component, native endian.
    #[derive(Debug, Clone, Copy)]
    pub struct RGBA64;
}

/// Resampler with preallocated buffers and coeffecients for the given
/// dimensions and filter type.
#[derive(Debug)]
pub struct Resizer<Format: PixelFormat> {
    // Source/target dimensions.
    w1: usize,
    h1: usize,
    w2: usize,
    h2: usize,
    pix_fmt: Format,
    // Temporary/preallocated stuff.
    tmp: Vec<f32>,
    coeffs_w: Vec<CoeffsLine>,
    coeffs_h: Vec<CoeffsLine>,
}

#[derive(Debug, Clone)]
struct CoeffsLine {
    start: usize,
    coeffs: Arc<[f32]>,
}

impl<Format: PixelFormat> Resizer<Format> {
    /// Create a new resizer instance.
    pub fn new(source_width: usize, source_heigth: usize, dest_width: usize, dest_height: usize, pixel_format: Format, filter_type: Type) -> Self {
        let filter = match filter_type {
            Type::Point => Filter::new(Box::new(point_kernel), 0.0),
            Type::Triangle => Filter::new(Box::new(triangle_kernel), 1.0),
            Type::Catrom => Filter::new_cubic(0.0, 0.5),
            Type::Mitchell => Filter::new_cubic(1.0/3.0, 1.0/3.0),
            Type::Lanczos3 => Filter::new_lanczos(3.0),
            Type::Custom(f) => f,
        };
        // filters very often create repeating patterns,
        // so overall memory used by them can be reduced
        // which should save some cache space
        let mut recycled_coeffs = HashMap::new();

        let coeffs_w = Self::calc_coeffs(source_width, dest_width, &filter, &mut recycled_coeffs);
        let coeffs_h = if source_heigth == source_width && dest_height == dest_width {
            coeffs_w.clone()
        } else {
            Self::calc_coeffs(source_heigth, dest_height, &filter, &mut recycled_coeffs)
        };
        Self {
            w1: source_width,
            h1: source_heigth,
            w2: dest_width,
            h2: dest_height,
            tmp: Vec::with_capacity(source_width * dest_height * pixel_format.get_ncomponents()),
            pix_fmt: pixel_format,
            coeffs_w,
            coeffs_h,
        }
    }

    fn calc_coeffs(s1: usize, s2: usize, f: &Filter, recycled_coeffs: &mut HashMap<(usize, [u8; 4], [u8; 4]), Arc<[f32]>>) -> Vec<CoeffsLine> {
        let ratio = s1 as f32 / s2 as f32;
        // Scale the filter when downsampling.
        let filter_scale = ratio.max(1.);
        let filter_radius = (f.support * filter_scale).ceil();
        (0..s2).map(|x2| {
            let x1 = (x2 as f32 + 0.5) * ratio - 0.5;
            let start = (x1 - filter_radius).ceil() as isize;
            let start = Self::clamp(start, 0, s1 as isize - 1) as usize;
            let end = (x1 + filter_radius).floor() as isize;
            let end = Self::clamp(end, 0, s1 as isize - 1) as usize;
            let sum: f32 = (start..=end).map(|i| (f.kernel)((i as f32 - x1) / filter_scale)).sum();
            let key = (end - start, filter_scale.to_ne_bytes(), (x1 - start as f32).to_ne_bytes());
            let coeffs = recycled_coeffs.entry(key).or_insert_with(|| {
                (start..=end).map(|i| {
                    let v = (f.kernel)((i as f32 - x1) / filter_scale);
                    v / sum
                }).collect::<Arc<[_]>>()
            }).clone();
            CoeffsLine { start, coeffs }
        }).collect()
    }

    #[inline]
    fn clamp<N: PartialOrd>(input: N, min: N, max: N) -> N {
        if input > max {
            max
        } else if input < min {
            min
        } else {
            input
        }
    }

    // Resample W1xH1 to W1xH2.
    // Stride is a length of the source row (>= W1)
    fn sample_rows(&mut self, src: &[Format::Subpixel], stride: usize) {
        let ncomp = self.pix_fmt.get_ncomponents();
        self.tmp.clear();
        assert!(self.tmp.capacity() <= self.w1 * self.h2 * ncomp); // no reallocations
        for x1 in 0..self.w1 {
            let h2 = self.h2;
            let coeffs_h = &self.coeffs_h[0..h2];
            for y2 in 0..h2 {
                let mut accum = Format::new_accum();
                let line = &coeffs_h[y2];
                let src = &src[(line.start * stride + x1) * ncomp..];
                for (i, coeff) in line.coeffs.iter().copied().enumerate() {
                    let base = (i * stride) * ncomp;
                    let src = &src[base..base + ncomp];
                    for (acc, s) in accum.as_mut().iter_mut().zip(src) {
                        *acc += Format::from_subpixel(s) * coeff;
                    }
                }
                for &v in accum.as_ref().iter() {
                    self.tmp.push(v);
                }
            }
        }
    }

    // Resample W1xH2 to W2xH2.
    fn sample_cols(&mut self, dst: &mut [Format::Subpixel]) {
        let ncomp = self.pix_fmt.get_ncomponents();
        let mut offset = 0;
        // Assert that dst is large enough
        let dst = &mut dst[0..self.h2 * self.w2 * ncomp];
        for y2 in 0..self.h2 {
            let w2 = self.w2;
            let coeffs_w = &self.coeffs_w[0..w2];
            for x2 in 0..w2 {
                let mut accum = Format::new_accum();
                let line = &coeffs_w[x2];
                for (i, coeff) in line.coeffs.iter().copied().enumerate() {
                    let x0 = line.start + i;
                    let base = (x0 * self.h2 + y2) * ncomp;
                    let tmp = &self.tmp[base..base + ncomp];
                    for (acc, &p) in accum.as_mut().iter_mut().zip(tmp) {
                        *acc += p * coeff;
                    }
                }
                for &v in accum.as_ref().iter() {
                    dst[offset] = Format::into_subpixel(v);
                    offset += 1;
                }
            }
        }
    }

    /// Resize `src` image data into `dst`.
    pub fn resize(&mut self, src: &[Format::Subpixel], dst: &mut [Format::Subpixel]) {
        let stride = self.w1;
        self.resize_stride(src, stride, dst)
    }

    /// Resize `src` image data into `dst`, skipping `stride` pixels each row.
    pub fn resize_stride(&mut self, src: &[Format::Subpixel], src_stride: usize, dst: &mut [Format::Subpixel]) {
        // TODO(Kagami):
        // * Multi-thread
        // * Bound checkings
        // * SIMD
        assert!(self.w1 <= src_stride);
        assert!(src.len() >= src_stride * self.h1 * self.pix_fmt.get_ncomponents());
        assert_eq!(dst.len(), self.w2 * self.h2 * self.pix_fmt.get_ncomponents());
        self.sample_rows(src, src_stride);
        self.sample_cols(dst)
    }
}

/// Create a new resizer instance. Alias for `Resizer::new`.
pub fn new<Format: PixelFormat>(src_width: usize, src_height: usize, dest_width: usize, dest_height: usize, pixel_format: Format, filter_type: Type) -> Resizer<Format> {
    Resizer::new(src_width, src_height, dest_width, dest_height, pixel_format, filter_type)
}

/// Resize image data to the new dimension in a single step.
///
/// **NOTE:** If you need to resize to the same dimension multiple times,
/// consider creating an resizer instance since it's faster.
#[deprecated(note="Use resize::new().resize()")]
#[allow(deprecated)]
pub fn resize<Format: PixelFormat>(
    src_width: usize, src_height: usize, dest_width: usize, dest_height: usize,
    pixel_format: Format, filter_type: Type,
    src: &[Format::Subpixel], dst: &mut [Format::Subpixel],
) {
    Resizer::new(src_width, src_height, dest_width, dest_height, pixel_format, filter_type).resize(src, dst)
}

#[test]
fn pixel_sizes() {
    assert_eq!(Pixel::RGB24.get_ncomponents(), 3);
    assert_eq!(Pixel::RGB24.get_size(), 3 * 1);
    assert_eq!(Pixel::RGBA.get_size(), 4 * 1);

    assert_eq!(Pixel::RGB48.get_ncomponents(), 3);
    assert_eq!(Pixel::RGB48.get_size(), 3 * 2);
    assert_eq!(Pixel::RGBA64.get_ncomponents(), 4);
    assert_eq!(Pixel::RGBA64.get_size(), 4 * 2);
}

#[test]
fn resize_stride() {
    let mut r = new(2, 2, 3, 4, Pixel::Gray16, Type::Triangle);
    let mut dst = vec![0; 12];
    r.resize_stride(&[
        65535,65535,1,2,
        65535,65535,3,4,
    ], 4, &mut dst);
    assert_eq!(&dst, &[65535; 12]);
}