repr_rs/cache/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
pub(crate) mod lazy;
#[cfg(feature = "eager")]
pub(crate) mod eager;
use crate::Repr;
use downcast_rs::{impl_downcast, Downcast};
use std::collections::BTreeMap;
use std::fmt::{Debug, Display};
use std::hash::{Hash, Hasher};
use std::ops::{Deref, DerefMut};
pub(crate) trait Cache<T>: Downcast {
fn notify(&self, _value: &T);
}
impl_downcast!(Cache<T>);
/// Wraps a value and ensures that an invariant is maintained while allowing that value to be
/// mutated. The invariant is checked after every mutation.
/// Additionally, this struct allows for cacheable reads of the value. This is useful when the
/// read function is expensive. By default, the caching is lazy, so after a value is read once that
/// same read function will fetch the cached value unless the value has been mutated.
///
/// With the feature `eager` enabled, the [`crate::EagerCacheLookup`] trait is implemented for this struct
/// and can be used to cache values eagerly. Whenever the value is mutated, all eager caches
/// will be updated in parallel.
///
/// This struct requires that the value has a `'static` lifetime. If you need to store a value
/// with a non-static lifetime consider using [`Repr`].
pub struct CacheableRepr<T: Debug + 'static, I: Fn(&T) -> bool> {
inner: Repr<T, I>,
caches: BTreeMap<usize, Box<dyn Cache<T>>>,
eager_caches: BTreeMap<usize, Box<dyn Cache<T>>>,
}
impl<T: Debug + 'static, I: Fn(&T) -> bool> CacheableRepr<T, I> {
/// Creates a new representation invariant with the given value and invariant function.
/// ```rust
/// use repr_rs::CacheableRepr;
/// struct MinMax { min: i32, max: i32 }
/// CacheableRepr::new(
/// MinMax { min: 1, max: 5 },
/// |mm| mm.min < mm.max,
/// );
/// ```
pub const fn new(inner: T, invariant: I) -> Self {
let repr = Repr::new(inner, invariant);
Self {
caches: BTreeMap::new(),
eager_caches: BTreeMap::new(),
inner: repr,
}
}
/// Creates a new representation invariant with the given value, invariant function, and violation message.
/// ```rust
/// use repr_rs::CacheableRepr;
/// struct MinMax { min: i32, max: i32 }
/// CacheableRepr::with_msg(
/// MinMax { min: 1, max: 5 },
/// |mm| mm.min < mm.max,
/// "min must be less than max",
/// );
/// ```
pub const fn with_msg(inner: T, invariant: I, violation_message: &'static str) -> Self {
let repr = Repr::with_msg(inner, invariant, violation_message);
Self {
caches: BTreeMap::new(),
eager_caches: BTreeMap::new(),
inner: repr,
}
}
/// Borrows a read-only view of the value in the representation invariant.
/// ```rust
/// use repr_rs::CacheableRepr;
/// struct MinMax { min: i32, max: i32 }
/// let repr = CacheableRepr::new(MinMax { min: 1, max: 5 }, |mm| mm.min < mm.max);
/// let view = repr.read();
/// assert_eq!(1, view.min);
/// assert_eq!(5, view.max);
/// ```
#[inline]
pub fn read(&self) -> &T {
// Safety: borrowing rules ensure that T is valid, and because this is an immutable borrow
// of the Repr, no mutable borrows can take place.
self.inner.read()
}
/// Borrows a mutable view of the value in the representation invariant.
/// ```rust
/// use repr_rs::CacheableRepr;
/// struct MinMax { min: i32, max: i32 }
/// let mut repr = CacheableRepr::new(MinMax { min: 1, max: 5 }, |mm| mm.min < mm.max);
/// {
/// let view = repr.read();
/// assert_eq!(1, view.min);
/// assert_eq!(5, view.max);
/// }
/// repr.write().min = 4;
/// let view = repr.read();
/// assert_eq!(4, view.min);
/// assert_eq!(5, view.max);
/// ```
///
/// Rust's borrowing rules prevent the read-only view being held while a mutation occurs. For
/// example, this won't compile:
/// ```compile_fail
/// use repr_rs::CacheableRepr;
/// struct MinMax { min: i32, max: i32 }
/// let mut repr = CacheableRepr::new(MinMax { min: 1, max: 5 }, |mm| mm.min < mm.max);
/// let view = repr.borrow();
/// assert_eq!(1, view.min);
/// assert_eq!(5, view.max);
/// // error[E0502]: cannot borrow `repr` as mutable because it is also borrowed as immutable
/// repr.borrow_mut().min = 4;
/// assert_eq!(4, view.min);
/// assert_eq!(5, view.max);
/// ```
#[inline]
pub fn write(&mut self) -> ReprMutator<T, I> {
// Can be `const` when `const_mut_refs` is stabilised.
ReprMutator {
repr: self,
}
}
/// Consumes the representation invariant and returns the inner value.
/// ```rust
/// use repr_rs::Repr;
/// struct MinMax { min: i32, max: i32 }
/// let repr = Repr::new(MinMax { min: 1, max: 5 }, |mm| mm.min < mm.max);
/// let inner = repr.into_inner();
/// assert_eq!(1, inner.min);
/// ```
#[inline]
pub fn into_inner(self) -> T {
self.inner.into_inner()
}
/// Borrows a read-only view of the value in the representation invariant and caches the
/// result of the read function. The cache is keyed by the read function's address, so in general
/// you should use function references instead of closures. It is a bug to perform any side effects
/// in the read function (i.e. reading from a file).
/// ```rust
/// use std::sync::atomic::{AtomicU32, Ordering};
/// use repr_rs::CacheableRepr;
/// struct Person { name: String }
/// let mut repr = CacheableRepr::new(Person { name: "Alice and Bob together at last".into() }, |p| !p.name.is_empty());
/// static READ_SPY: AtomicU32 = AtomicU32::new(0);
/// fn expensive_read(p: &Person) -> usize {
/// // Just for demonstration purposes.
/// // Do not do side effects in your read functions!
/// READ_SPY.fetch_add(1, Ordering::Relaxed);
/// fib(p.name.len())
/// }
/// let fib_of_name_len = repr.lazy(expensive_read);
/// assert_eq!(832040, fib_of_name_len);
/// // this does not recompute the fibonacci number, it just gets it from the cache!
/// let fib_of_name_len2 = repr.lazy(expensive_read);
/// assert_eq!(832040, fib_of_name_len2);
/// repr.write().name = "Alice".into();
/// // this recomputes the fibonacci number because the name has changed
/// let fib_of_name_len3 = repr.lazy(expensive_read);
/// assert_eq!(5, fib_of_name_len3);
/// assert_eq!(2, READ_SPY.load(Ordering::Relaxed));
/// # fn fib(n: usize) -> usize {
/// # if n <= 1 { n } else { fib(n - 1) + fib(n - 2) }
/// # }
pub fn lazy<R: Clone + 'static>(&mut self, read_fn: fn(&T) -> R) -> R {
let fn_identity = read_fn as *const fn(&T) -> R as usize;
let entry = self.caches.entry(fn_identity);
let cache = entry.or_insert_with(|| Box::new(lazy::CacheableRead::<T, R>::new(read_fn)));
let cache = cache.downcast_mut::<lazy::CacheableRead<T, R>>().unwrap();
let data = self.inner.inner.get_mut();
cache.read(data)
}
fn check(&mut self) {
self.inner.check();
let data = self.inner.inner.get_mut();
for cache in self.caches.values().chain(self.eager_caches.values()) {
cache.notify(data);
}
}
}
impl<T: Debug + 'static, I: Fn(&T) -> bool> From<Repr<T, I>> for CacheableRepr<T, I> {
fn from(value: Repr<T, I>) -> Self {
Self {
caches: BTreeMap::new(),
eager_caches: BTreeMap::new(),
inner: value,
}
}
}
impl<T: Debug + 'static, I: Fn(&T) -> bool> From<CacheableRepr<T, I>> for Repr<T, I> {
fn from(value: CacheableRepr<T, I>) -> Self {
value.inner
}
}
impl<T: Debug + Clone, I: Fn(&T) -> bool + Clone> Clone for CacheableRepr<T, I> {
fn clone(&self) -> Self {
let clone = self.inner.clone();
Self::from(clone)
}
}
impl<T: Debug + Hash, I: Fn(&T) -> bool> Hash for CacheableRepr<T, I> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.inner.hash(state);
}
}
impl<T: Debug + PartialEq, I: Fn(&T) -> bool> PartialEq for CacheableRepr<T, I> {
fn eq(&self, other: &Self) -> bool {
self.inner.eq(&other.inner)
}
}
impl<T: Debug + Eq, I: Fn(&T) -> bool> Eq for CacheableRepr<T, I> {}
impl<T: Debug, I: Fn(&T) -> bool> Debug for CacheableRepr<T, I> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "Repr({:?})", self.read())
}
}
impl <T: Debug + Display, I: Fn(&T) -> bool> Display for CacheableRepr<T, I> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.read())
}
}
#[repr(transparent)]
pub struct ReprMutator<'a, T: Debug + 'static, I: Fn(&T) -> bool> {
// inner: &'a mut T,
repr: &'a mut CacheableRepr<T, I>,
}
impl<'a, T: Debug, I: Fn(&T) -> bool> Deref for ReprMutator<'a, T, I> {
type Target = T;
fn deref(&self) -> &Self::Target {
// Safety: borrowing rules ensure that T is valid, and because ReprMutate mutably borrows
// the Repr, no mutable borrows of the inner can take place if we borrow it as imm here.
unsafe { &*self.repr.inner.inner.get() }
}
}
impl<'a, T: Debug, I: Fn(&T) -> bool> DerefMut for ReprMutator<'a, T, I> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.repr.inner.inner.get_mut()
}
}
impl<T: Debug, I: Fn(&T) -> bool> Drop for ReprMutator<'_, T, I> {
fn drop(&mut self) {
self.repr.check();
}
}