regex_cursor/engines/meta/regex.rs
1use core::{
2 borrow::Borrow,
3 panic::{RefUnwindSafe, UnwindSafe},
4};
5
6use std::{boxed::Box, sync::Arc, vec, vec::Vec};
7
8use regex_automata::{
9 nfa::thompson::WhichCaptures,
10 util::{
11 captures::{Captures, GroupInfo},
12 pool::{Pool, PoolGuard},
13 prefilter::Prefilter,
14 primitives::NonMaxUsize,
15 },
16 HalfMatch, Match, MatchKind, PatternID, Span,
17};
18use regex_syntax::{
19 ast,
20 hir::{self, Hir},
21};
22
23use crate::{
24 cursor::Cursor,
25 engines::meta::{error::BuildError, strategy::Strategy, wrappers},
26 util::iter,
27 Input,
28};
29
30/// A type alias for our pool of meta::Cache that fixes the type parameters to
31/// what we use for the meta regex below.
32type CachePool = Pool<Cache, CachePoolFn>;
33
34/// Same as above, but for the guard returned by a pool.
35type CachePoolGuard<'a> = PoolGuard<'a, Cache, CachePoolFn>;
36
37/// The type of the closure we use to create new caches. We need to spell out
38/// all of the marker traits or else we risk leaking !MARKER impls.
39type CachePoolFn = Box<dyn Fn() -> Cache + Send + Sync + UnwindSafe + RefUnwindSafe>;
40
41/// A regex matcher that works by composing several other regex matchers
42/// automatically.
43///
44/// In effect, a meta regex papers over a lot of the quirks or performance
45/// problems in each of the regex engines in this crate. Its goal is to provide
46/// an infallible and simple API that "just does the right thing" in the common
47/// case.
48///
49/// A meta regex is the implementation of a `Regex` in the `regex` crate.
50/// Indeed, the `regex` crate API is essentially just a light wrapper over
51/// this type. This includes the `regex` crate's `RegexSet` API!
52///
53/// # Composition
54///
55/// This is called a "meta" matcher precisely because it uses other regex
56/// matchers to provide a convenient high level regex API. Here are some
57/// examples of how other regex matchers are composed:
58///
59/// * When calling [`Regex::captures`], instead of immediately
60/// running a slower but more capable regex engine like the
61/// [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM), the meta regex engine
62/// will usually first look for the bounds of a match with a higher throughput
63/// regex engine like a [lazy DFA](crate::hybrid). Only when a match is found
64/// is a slower engine like `PikeVM` used to find the matching span for each
65/// capture group.
66/// * While higher throughout engines like the lazy DFA cannot handle
67/// Unicode word boundaries in general, they can still be used on pure ASCII
68/// haystacks by pretending that Unicode word boundaries are just plain ASCII
69/// word boundaries. However, if a haystack is not ASCII, the meta regex engine
70/// will automatically switch to a (possibly slower) regex engine that supports
71/// Unicode word boundaries in general.
72/// * In some cases where a regex pattern is just a simple literal or a small
73/// set of literals, an actual regex engine won't be used at all. Instead,
74/// substring or multi-substring search algorithms will be employed.
75///
76/// There are many other forms of composition happening too, but the above
77/// should give a general idea. In particular, it may perhaps be surprising
78/// that *multiple* regex engines might get executed for a single search. That
79/// is, the decision of what regex engine to use is not _just_ based on the
80/// pattern, but also based on the dynamic execution of the search itself.
81///
82/// The primary reason for this composition is performance. The fundamental
83/// tension is that the faster engines tend to be less capable, and the more
84/// capable engines tend to be slower.
85///
86/// Note that the forms of composition that are allowed are determined by
87/// compile time crate features and configuration. For example, if the `hybrid`
88/// feature isn't enabled, or if [`Config::hybrid`] has been disabled, then the
89/// meta regex engine will never use a lazy DFA.
90///
91/// # Synchronization and cloning
92///
93/// Most of the regex engines in this crate require some kind of mutable
94/// "scratch" space to read and write from while performing a search. Since
95/// a meta regex composes these regex engines, a meta regex also requires
96/// mutable scratch space. This scratch space is called a [`Cache`].
97///
98/// Most regex engines _also_ usually have a read-only component, typically
99/// a [Thompson `NFA`](crate::nfa::thompson::NFA).
100///
101/// In order to make the `Regex` API convenient, most of the routines hide
102/// the fact that a `Cache` is needed at all. To achieve this, a [memory
103/// pool](crate::util::pool::Pool) is used internally to retrieve `Cache`
104/// values in a thread safe way that also permits reuse. This in turn implies
105/// that every such search call requires some form of synchronization. Usually
106/// this synchronization is fast enough to not notice, but in some cases, it
107/// can be a bottleneck. This typically occurs when all of the following are
108/// true:
109///
110/// * The same `Regex` is shared across multiple threads simultaneously,
111/// usually via a [`util::lazy::Lazy`](crate::util::lazy::Lazy) or something
112/// similar from the `once_cell` or `lazy_static` crates.
113/// * The primary unit of work in each thread is a regex search.
114/// * Searches are run on very short haystacks.
115///
116/// This particular case can lead to high contention on the pool used by a
117/// `Regex` internally, which can in turn increase latency to a noticeable
118/// effect. This cost can be mitigated in one of the following ways:
119///
120/// * Use a distinct copy of a `Regex` in each thread, usually by cloning it.
121/// Cloning a `Regex` _does not_ do a deep copy of its read-only component.
122/// But it does lead to each `Regex` having its own memory pool, which in
123/// turn eliminates the problem of contention. In general, this technique should
124/// not result in any additional memory usage when compared to sharing the same
125/// `Regex` across multiple threads simultaneously.
126/// * Use lower level APIs, like [`Regex::search_with`], which permit passing
127/// a `Cache` explicitly. In this case, it is up to you to determine how best
128/// to provide a `Cache`. For example, you might put a `Cache` in thread-local
129/// storage if your use case allows for it.
130///
131/// Overall, this is an issue that happens rarely in practice, but it can
132/// happen.
133///
134/// # Warning: spin-locks may be used in alloc-only mode
135///
136/// When this crate is built without the `std` feature and the high level APIs
137/// on a `Regex` are used, then a spin-lock will be used to synchronize access
138/// to an internal pool of `Cache` values. This may be undesirable because
139/// a spin-lock is [effectively impossible to implement correctly in user
140/// space][spinlocks-are-bad]. That is, more concretely, the spin-lock could
141/// result in a deadlock.
142///
143/// [spinlocks-are-bad]: https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html
144///
145/// If one wants to avoid the use of spin-locks when the `std` feature is
146/// disabled, then you must use APIs that accept a `Cache` value explicitly.
147/// For example, [`Regex::search_with`].
148///
149/// # Example
150///
151/// ```
152/// use regex_automata::meta::Regex;
153///
154/// let re = Regex::new(r"^[0-9]{4}-[0-9]{2}-[0-9]{2}$")?;
155/// assert!(re.is_match("2010-03-14"));
156///
157/// # Ok::<(), Box<dyn std::error::Error>>(())
158/// ```
159///
160/// # Example: anchored search
161///
162/// This example shows how to use [`Input::anchored`] to run an anchored
163/// search, even when the regex pattern itself isn't anchored. An anchored
164/// search guarantees that if a match is found, then the start offset of the
165/// match corresponds to the offset at which the search was started.
166///
167/// ```
168/// use regex_automata::{meta::Regex, Anchored, Input, Match};
169///
170/// let re = Regex::new(r"\bfoo\b")?;
171/// let input = Input::new("xx foo xx").range(3..).anchored(Anchored::Yes);
172/// // The offsets are in terms of the original haystack.
173/// assert_eq!(Some(Match::must(0, 3..6)), re.find(input));
174///
175/// // Notice that no match occurs here, because \b still takes the
176/// // surrounding context into account, even if it means looking back
177/// // before the start of your search.
178/// let hay = "xxfoo xx";
179/// let input = Input::new(hay).range(2..).anchored(Anchored::Yes);
180/// assert_eq!(None, re.find(input));
181/// // Indeed, you cannot achieve the above by simply slicing the
182/// // haystack itself, since the regex engine can't see the
183/// // surrounding context. This is why 'Input' permits setting
184/// // the bounds of a search!
185/// let input = Input::new(&hay[2..]).anchored(Anchored::Yes);
186/// // WRONG!
187/// assert_eq!(Some(Match::must(0, 0..3)), re.find(input));
188///
189/// # Ok::<(), Box<dyn std::error::Error>>(())
190/// ```
191///
192/// # Example: earliest search
193///
194/// This example shows how to use [`Input::earliest`] to run a search that
195/// might stop before finding the typical leftmost match.
196///
197/// ```
198/// use regex_automata::{meta::Regex, Anchored, Input, Match};
199///
200/// let re = Regex::new(r"[a-z]{3}|b")?;
201/// let input = Input::new("abc").earliest(true);
202/// assert_eq!(Some(Match::must(0, 1..2)), re.find(input));
203///
204/// // Note that "earliest" isn't really a match semantic unto itself.
205/// // Instead, it is merely an instruction to whatever regex engine
206/// // gets used internally to quit as soon as it can. For example,
207/// // this regex uses a different search technique, and winds up
208/// // producing a different (but valid) match!
209/// let re = Regex::new(r"abc|b")?;
210/// let input = Input::new("abc").earliest(true);
211/// assert_eq!(Some(Match::must(0, 0..3)), re.find(input));
212///
213/// # Ok::<(), Box<dyn std::error::Error>>(())
214/// ```
215///
216/// # Example: change the line terminator
217///
218/// This example shows how to enable multi-line mode by default and change
219/// the line terminator to the NUL byte:
220///
221/// ```
222/// use regex_automata::{meta::Regex, util::syntax, Match};
223///
224/// let re = Regex::builder()
225/// .syntax(syntax::Config::new().multi_line(true))
226/// .configure(Regex::config().line_terminator(b'\x00'))
227/// .build(r"^foo$")?;
228/// let hay = "\x00foo\x00";
229/// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
230///
231/// # Ok::<(), Box<dyn std::error::Error>>(())
232/// ```
233#[derive(Debug)]
234pub struct Regex {
235 /// The actual regex implementation.
236 imp: Arc<RegexI>,
237 /// A thread safe pool of caches.
238 ///
239 /// For the higher level search APIs, a `Cache` is automatically plucked
240 /// from this pool before running a search. The lower level `with` methods
241 /// permit the caller to provide their own cache, thereby bypassing
242 /// accesses to this pool.
243 ///
244 /// Note that we put this outside the `Arc` so that cloning a `Regex`
245 /// results in creating a fresh `CachePool`. This in turn permits callers
246 /// to clone regexes into separate threads where each such regex gets
247 /// the pool's "thread owner" optimization. Otherwise, if one shares the
248 /// `Regex` directly, then the pool will go through a slower mutex path for
249 /// all threads except for the "owner."
250 pool: CachePool,
251}
252
253/// The internal implementation of `Regex`, split out so that it can be wrapped
254/// in an `Arc`.
255#[derive(Debug)]
256struct RegexI {
257 /// The core matching engine.
258 ///
259 /// Why is this reference counted when RegexI is already wrapped in an Arc?
260 /// Well, we need to capture this in a closure to our `Pool` below in order
261 /// to create new `Cache` values when needed. So since it needs to be in
262 /// two places, we make it reference counted.
263 ///
264 /// We make `RegexI` itself reference counted too so that `Regex` itself
265 /// stays extremely small and very cheap to clone.
266 strat: Arc<Strategy>,
267 /// Metadata about the regexes driving the strategy. The metadata is also
268 /// usually stored inside the strategy too, but we put it here as well
269 /// so that we can get quick access to it (without virtual calls) before
270 /// executing the regex engine. For example, we use this metadata to
271 /// detect a subset of cases where we know a match is impossible, and can
272 /// thus avoid calling into the strategy at all.
273 ///
274 /// Since `RegexInfo` is stored in multiple places, it is also reference
275 /// counted.
276 info: RegexInfo,
277}
278
279/// Convenience constructors for a `Regex` using the default configuration.
280impl Regex {
281 /// Builds a `Regex` from a single pattern string using the default
282 /// configuration.
283 ///
284 /// If there was a problem parsing the pattern or a problem turning it into
285 /// a regex matcher, then an error is returned.
286 ///
287 /// If you want to change the configuration of a `Regex`, use a [`Builder`]
288 /// with a [`Config`].
289 ///
290 /// # Example
291 ///
292 /// ```
293 /// use regex_automata::{meta::Regex, Match};
294 ///
295 /// let re = Regex::new(r"(?Rm)^foo$")?;
296 /// let hay = "\r\nfoo\r\n";
297 /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
298 ///
299 /// # Ok::<(), Box<dyn std::error::Error>>(())
300 /// ```
301 pub fn new(pattern: &str) -> Result<Regex, BuildError> {
302 Self::builder().build(pattern)
303 }
304
305 /// Builds a `Regex` from many pattern strings using the default
306 /// configuration.
307 ///
308 /// If there was a problem parsing any of the patterns or a problem turning
309 /// them into a regex matcher, then an error is returned.
310 ///
311 /// If you want to change the configuration of a `Regex`, use a [`Builder`]
312 /// with a [`Config`].
313 ///
314 /// # Example: simple lexer
315 ///
316 /// This simplistic example leverages the multi-pattern support to build a
317 /// simple little lexer. The pattern ID in the match tells you which regex
318 /// matched, which in turn might be used to map back to the "type" of the
319 /// token returned by the lexer.
320 ///
321 /// ```
322 /// use regex_automata::{meta::Regex, Match};
323 ///
324 /// let re = Regex::new_many(&[
325 /// r"[[:space:]]",
326 /// r"[A-Za-z0-9][A-Za-z0-9_]+",
327 /// r"->",
328 /// r".",
329 /// ])?;
330 /// let haystack = "fn is_boss(bruce: i32, springsteen: String) -> bool;";
331 /// let matches: Vec<Match> = re.find_iter(haystack).collect();
332 /// assert_eq!(matches, vec![
333 /// Match::must(1, 0..2), // 'fn'
334 /// Match::must(0, 2..3), // ' '
335 /// Match::must(1, 3..10), // 'is_boss'
336 /// Match::must(3, 10..11), // '('
337 /// Match::must(1, 11..16), // 'bruce'
338 /// Match::must(3, 16..17), // ':'
339 /// Match::must(0, 17..18), // ' '
340 /// Match::must(1, 18..21), // 'i32'
341 /// Match::must(3, 21..22), // ','
342 /// Match::must(0, 22..23), // ' '
343 /// Match::must(1, 23..34), // 'springsteen'
344 /// Match::must(3, 34..35), // ':'
345 /// Match::must(0, 35..36), // ' '
346 /// Match::must(1, 36..42), // 'String'
347 /// Match::must(3, 42..43), // ')'
348 /// Match::must(0, 43..44), // ' '
349 /// Match::must(2, 44..46), // '->'
350 /// Match::must(0, 46..47), // ' '
351 /// Match::must(1, 47..51), // 'bool'
352 /// Match::must(3, 51..52), // ';'
353 /// ]);
354 ///
355 /// # Ok::<(), Box<dyn std::error::Error>>(())
356 /// ```
357 ///
358 /// One can write a lexer like the above using a regex like
359 /// `(?P<space>[[:space:]])|(?P<ident>[A-Za-z0-9][A-Za-z0-9_]+)|...`,
360 /// but then you need to ask whether capture group matched to determine
361 /// which branch in the regex matched, and thus, which token the match
362 /// corresponds to. In contrast, the above example includes the pattern ID
363 /// in the match. There's no need to use capture groups at all.
364 ///
365 /// # Example: finding the pattern that caused an error
366 ///
367 /// When a syntax error occurs, it is possible to ask which pattern
368 /// caused the syntax error.
369 ///
370 /// ```
371 /// use regex_automata::{meta::Regex, PatternID};
372 ///
373 /// let err = Regex::new_many(&["a", "b", r"\p{Foo}", "c"]).unwrap_err();
374 /// assert_eq!(Some(PatternID::must(2)), err.pattern());
375 /// ```
376 ///
377 /// # Example: zero patterns is valid
378 ///
379 /// Building a regex with zero patterns results in a regex that never
380 /// matches anything. Because this routine is generic, passing an empty
381 /// slice usually requires a turbo-fish (or something else to help type
382 /// inference).
383 ///
384 /// ```
385 /// use regex_automata::{meta::Regex, util::syntax, Match};
386 ///
387 /// let re = Regex::new_many::<&str>(&[])?;
388 /// assert_eq!(None, re.find(""));
389 ///
390 /// # Ok::<(), Box<dyn std::error::Error>>(())
391 /// ```
392 pub fn new_many<P: AsRef<str>>(patterns: &[P]) -> Result<Regex, BuildError> {
393 Self::builder().build_many(patterns)
394 }
395
396 /// Return a default configuration for a `Regex`.
397 ///
398 /// This is a convenience routine to avoid needing to import the [`Config`]
399 /// type when customizing the construction of a `Regex`.
400 ///
401 /// # Example: lower the NFA size limit
402 ///
403 /// In some cases, the default size limit might be too big. The size limit
404 /// can be lowered, which will prevent large regex patterns from compiling.
405 ///
406 /// ```
407 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
408 /// use regex_automata::meta::Regex;
409 ///
410 /// let result = Regex::builder()
411 /// .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
412 /// // Not even 20KB is enough to build a single large Unicode class!
413 /// .build(r"\pL");
414 /// assert!(result.is_err());
415 ///
416 /// # Ok::<(), Box<dyn std::error::Error>>(())
417 /// ```
418 pub fn config() -> Config {
419 Config::new()
420 }
421
422 /// Return a builder for configuring the construction of a `Regex`.
423 ///
424 /// This is a convenience routine to avoid needing to import the
425 /// [`Builder`] type in common cases.
426 ///
427 /// # Example: change the line terminator
428 ///
429 /// This example shows how to enable multi-line mode by default and change
430 /// the line terminator to the NUL byte:
431 ///
432 /// ```
433 /// use regex_automata::{meta::Regex, util::syntax, Match};
434 ///
435 /// let re = Regex::builder()
436 /// .syntax(syntax::Config::new().multi_line(true))
437 /// .configure(Regex::config().line_terminator(b'\x00'))
438 /// .build(r"^foo$")?;
439 /// let hay = "\x00foo\x00";
440 /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
441 ///
442 /// # Ok::<(), Box<dyn std::error::Error>>(())
443 /// ```
444 pub fn builder() -> Builder {
445 Builder::new()
446 }
447}
448
449/// High level convenience routines for using a regex to search a haystack.
450impl Regex {
451 /// Returns true if and only if this regex matches the given haystack.
452 ///
453 /// This routine may short circuit if it knows that scanning future input
454 /// will never lead to a different result. (Consider how this might make
455 /// a difference given the regex `a+` on the haystack `aaaaaaaaaaaaaaa`.
456 /// This routine _may_ stop after it sees the first `a`, but routines like
457 /// `find` need to continue searching because `+` is greedy by default.)
458 ///
459 /// # Example
460 ///
461 /// ```
462 /// use regex_automata::meta::Regex;
463 ///
464 /// let re = Regex::new("foo[0-9]+bar")?;
465 ///
466 /// assert!(re.is_match("foo12345bar"));
467 /// assert!(!re.is_match("foobar"));
468 ///
469 /// # Ok::<(), Box<dyn std::error::Error>>(())
470 /// ```
471 ///
472 /// # Example: consistency with search APIs
473 ///
474 /// `is_match` is guaranteed to return `true` whenever `find` returns a
475 /// match. This includes searches that are executed entirely within a
476 /// codepoint:
477 ///
478 /// ```
479 /// use regex_automata::{meta::Regex, Input};
480 ///
481 /// let re = Regex::new("a*")?;
482 ///
483 /// // This doesn't match because the default configuration bans empty
484 /// // matches from splitting a codepoint.
485 /// assert!(!re.is_match(Input::new("☃").span(1..2)));
486 /// assert_eq!(None, re.find(Input::new("☃").span(1..2)));
487 ///
488 /// # Ok::<(), Box<dyn std::error::Error>>(())
489 /// ```
490 ///
491 /// Notice that when UTF-8 mode is disabled, then the above reports a
492 /// match because the restriction against zero-width matches that split a
493 /// codepoint has been lifted:
494 ///
495 /// ```
496 /// use regex_automata::{meta::Regex, Input, Match};
497 ///
498 /// let re = Regex::builder()
499 /// .configure(Regex::config().utf8_empty(false))
500 /// .build("a*")?;
501 ///
502 /// assert!(re.is_match(Input::new("☃").span(1..2)));
503 /// assert_eq!(
504 /// Some(Match::must(0, 1..1)),
505 /// re.find(Input::new("☃").span(1..2)),
506 /// );
507 ///
508 /// # Ok::<(), Box<dyn std::error::Error>>(())
509 /// ```
510 ///
511 /// A similar idea applies when using line anchors with CRLF mode enabled,
512 /// which prevents them from matching between a `\r` and a `\n`.
513 ///
514 /// ```
515 /// use regex_automata::{meta::Regex, Input, Match};
516 ///
517 /// let re = Regex::new(r"(?Rm:$)")?;
518 /// assert!(!re.is_match(Input::new("\r\n").span(1..1)));
519 /// // A regular line anchor, which only considers \n as a
520 /// // line terminator, will match.
521 /// let re = Regex::new(r"(?m:$)")?;
522 /// assert!(re.is_match(Input::new("\r\n").span(1..1)));
523 ///
524 /// # Ok::<(), Box<dyn std::error::Error>>(())
525 /// ```
526 #[inline]
527 pub fn is_match<C: Cursor>(&self, mut input: Input<C>) -> bool {
528 input.earliest(true);
529 if self.imp.info.is_impossible(&input) {
530 return false;
531 }
532 let mut guard = self.pool.get();
533 let result = self.imp.strat.is_match(&mut guard, &mut input);
534 // See 'Regex::search' for why we put the guard back explicitly.
535 PoolGuard::put(guard);
536 result
537 }
538
539 /// Executes a leftmost search and returns the first match that is found,
540 /// if one exists.
541 ///
542 /// # Example
543 ///
544 /// ```
545 /// use regex_automata::{meta::Regex, Match};
546 ///
547 /// let re = Regex::new("foo[0-9]+")?;
548 /// assert_eq!(Some(Match::must(0, 0..8)), re.find("foo12345"));
549 ///
550 /// # Ok::<(), Box<dyn std::error::Error>>(())
551 /// ```
552 #[inline]
553 pub fn find<C>(&self, input: Input<C>) -> Option<Match>
554 where
555 C: Cursor,
556 {
557 self.search(input)
558 }
559
560 /// Executes a leftmost forward search and writes the spans of capturing
561 /// groups that participated in a match into the provided [`Captures`]
562 /// value. If no match was found, then [`Captures::is_match`] is guaranteed
563 /// to return `false`.
564 ///
565 /// # Example
566 ///
567 /// ```
568 /// use regex_automata::{meta::Regex, Span};
569 ///
570 /// let re = Regex::new(r"^([0-9]{4})-([0-9]{2})-([0-9]{2})$")?;
571 /// let mut caps = re.create_captures();
572 ///
573 /// re.captures("2010-03-14", &mut caps);
574 /// assert!(caps.is_match());
575 /// assert_eq!(Some(Span::from(0..4)), caps.get_group(1));
576 /// assert_eq!(Some(Span::from(5..7)), caps.get_group(2));
577 /// assert_eq!(Some(Span::from(8..10)), caps.get_group(3));
578 ///
579 /// # Ok::<(), Box<dyn std::error::Error>>(())
580 /// ```
581 #[inline]
582 pub fn captures<C: Cursor>(&self, input: Input<C>, caps: &mut Captures) {
583 self.search_captures(input, caps)
584 }
585
586 /// Returns an iterator over all non-overlapping leftmost matches in
587 /// the given haystack. If no match exists, then the iterator yields no
588 /// elements.
589 ///
590 /// # Example
591 ///
592 /// ```
593 /// use regex_automata::{meta::Regex, Match};
594 ///
595 /// let re = Regex::new("foo[0-9]+")?;
596 /// let haystack = "foo1 foo12 foo123";
597 /// let matches: Vec<Match> = re.find_iter(haystack).collect();
598 /// assert_eq!(matches, vec![
599 /// Match::must(0, 0..4),
600 /// Match::must(0, 5..10),
601 /// Match::must(0, 11..17),
602 /// ]);
603 /// # Ok::<(), Box<dyn std::error::Error>>(())
604 /// ```
605 #[inline]
606 pub fn find_iter<C: Cursor>(&self, input: Input<C>) -> FindMatches<'_, C> {
607 let cache = self.pool.get();
608 let it = iter::Searcher::new(input);
609 FindMatches { re: self, cache, it }
610 }
611
612 /// Returns an iterator over all non-overlapping `Captures` values. If no
613 /// match exists, then the iterator yields no elements.
614 ///
615 /// This yields the same matches as [`Regex::find_iter`], but it includes
616 /// the spans of all capturing groups that participate in each match.
617 ///
618 /// **Tip:** See [`util::iter::Searcher`](crate::util::iter::Searcher) for
619 /// how to correctly iterate over all matches in a haystack while avoiding
620 /// the creation of a new `Captures` value for every match. (Which you are
621 /// forced to do with an `Iterator`.)
622 ///
623 /// # Example
624 ///
625 /// ```
626 /// use regex_automata::{meta::Regex, Span};
627 ///
628 /// let re = Regex::new("foo(?P<numbers>[0-9]+)")?;
629 ///
630 /// let haystack = "foo1 foo12 foo123";
631 /// let matches: Vec<Span> = re
632 /// .captures_iter(haystack)
633 /// // The unwrap is OK since 'numbers' matches if the pattern matches.
634 /// .map(|caps| caps.get_group_by_name("numbers").unwrap())
635 /// .collect();
636 /// assert_eq!(matches, vec![
637 /// Span::from(3..4),
638 /// Span::from(8..10),
639 /// Span::from(14..17),
640 /// ]);
641 /// # Ok::<(), Box<dyn std::error::Error>>(())
642 /// ```
643 #[inline]
644 pub fn captures_iter<C: Cursor>(&self, input: Input<C>) -> CapturesMatches<'_, C> {
645 let cache = self.pool.get();
646 let caps = self.create_captures();
647 let it = iter::Searcher::new(input);
648 CapturesMatches { re: self, cache, caps, it }
649 }
650
651 /// Returns an iterator of spans of the haystack given, delimited by a
652 /// match of the regex. Namely, each element of the iterator corresponds to
653 /// a part of the haystack that *isn't* matched by the regular expression.
654 ///
655 /// # Example
656 ///
657 /// To split a string delimited by arbitrary amounts of spaces or tabs:
658 ///
659 /// ```
660 /// use regex_automata::meta::Regex;
661 ///
662 /// let re = Regex::new(r"[ \t]+")?;
663 /// let hay = "a b \t c\td e";
664 /// let fields: Vec<&str> = re.split(hay).map(|span| &hay[span]).collect();
665 /// assert_eq!(fields, vec!["a", "b", "c", "d", "e"]);
666 ///
667 /// # Ok::<(), Box<dyn std::error::Error>>(())
668 /// ```
669 ///
670 /// # Example: more cases
671 ///
672 /// Basic usage:
673 ///
674 /// ```
675 /// use regex_automata::meta::Regex;
676 ///
677 /// let re = Regex::new(r" ")?;
678 /// let hay = "Mary had a little lamb";
679 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
680 /// assert_eq!(got, vec!["Mary", "had", "a", "little", "lamb"]);
681 ///
682 /// let re = Regex::new(r"X")?;
683 /// let hay = "";
684 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
685 /// assert_eq!(got, vec![""]);
686 ///
687 /// let re = Regex::new(r"X")?;
688 /// let hay = "lionXXtigerXleopard";
689 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
690 /// assert_eq!(got, vec!["lion", "", "tiger", "leopard"]);
691 ///
692 /// let re = Regex::new(r"::")?;
693 /// let hay = "lion::tiger::leopard";
694 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
695 /// assert_eq!(got, vec!["lion", "tiger", "leopard"]);
696 ///
697 /// # Ok::<(), Box<dyn std::error::Error>>(())
698 /// ```
699 ///
700 /// If a haystack contains multiple contiguous matches, you will end up
701 /// with empty spans yielded by the iterator:
702 ///
703 /// ```
704 /// use regex_automata::meta::Regex;
705 ///
706 /// let re = Regex::new(r"X")?;
707 /// let hay = "XXXXaXXbXc";
708 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
709 /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
710 ///
711 /// let re = Regex::new(r"/")?;
712 /// let hay = "(///)";
713 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
714 /// assert_eq!(got, vec!["(", "", "", ")"]);
715 ///
716 /// # Ok::<(), Box<dyn std::error::Error>>(())
717 /// ```
718 ///
719 /// Separators at the start or end of a haystack are neighbored by empty
720 /// spans.
721 ///
722 /// ```
723 /// use regex_automata::meta::Regex;
724 ///
725 /// let re = Regex::new(r"0")?;
726 /// let hay = "010";
727 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
728 /// assert_eq!(got, vec!["", "1", ""]);
729 ///
730 /// # Ok::<(), Box<dyn std::error::Error>>(())
731 /// ```
732 ///
733 /// When the empty string is used as a regex, it splits at every valid
734 /// UTF-8 boundary by default (which includes the beginning and end of the
735 /// haystack):
736 ///
737 /// ```
738 /// use regex_automata::meta::Regex;
739 ///
740 /// let re = Regex::new(r"")?;
741 /// let hay = "rust";
742 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
743 /// assert_eq!(got, vec!["", "r", "u", "s", "t", ""]);
744 ///
745 /// // Splitting by an empty string is UTF-8 aware by default!
746 /// let re = Regex::new(r"")?;
747 /// let hay = "☃";
748 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
749 /// assert_eq!(got, vec!["", "☃", ""]);
750 ///
751 /// # Ok::<(), Box<dyn std::error::Error>>(())
752 /// ```
753 ///
754 /// But note that UTF-8 mode for empty strings can be disabled, which will
755 /// then result in a match at every byte offset in the haystack,
756 /// including between every UTF-8 code unit.
757 ///
758 /// ```
759 /// use regex_automata::meta::Regex;
760 ///
761 /// let re = Regex::builder()
762 /// .configure(Regex::config().utf8_empty(false))
763 /// .build(r"")?;
764 /// let hay = "☃".as_bytes();
765 /// let got: Vec<&[u8]> = re.split(hay).map(|sp| &hay[sp]).collect();
766 /// assert_eq!(got, vec![
767 /// // Writing byte string slices is just brutal. The problem is that
768 /// // b"foo" has type &[u8; 3] instead of &[u8].
769 /// &[][..], &[b'\xE2'][..], &[b'\x98'][..], &[b'\x83'][..], &[][..],
770 /// ]);
771 ///
772 /// # Ok::<(), Box<dyn std::error::Error>>(())
773 /// ```
774 ///
775 /// Contiguous separators (commonly shows up with whitespace), can lead to
776 /// possibly surprising behavior. For example, this code is correct:
777 ///
778 /// ```
779 /// use regex_automata::meta::Regex;
780 ///
781 /// let re = Regex::new(r" ")?;
782 /// let hay = " a b c";
783 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
784 /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
785 ///
786 /// # Ok::<(), Box<dyn std::error::Error>>(())
787 /// ```
788 ///
789 /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want
790 /// to match contiguous space characters:
791 ///
792 /// ```
793 /// use regex_automata::meta::Regex;
794 ///
795 /// let re = Regex::new(r" +")?;
796 /// let hay = " a b c";
797 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
798 /// // N.B. This does still include a leading empty span because ' +'
799 /// // matches at the beginning of the haystack.
800 /// assert_eq!(got, vec!["", "a", "b", "c"]);
801 ///
802 /// # Ok::<(), Box<dyn std::error::Error>>(())
803 /// ```
804 #[inline]
805 pub fn split<C: Cursor>(&self, input: Input<C>) -> Split<'_, C> {
806 Split { finder: self.find_iter(input), last: 0 }
807 }
808
809 /// Returns an iterator of at most `limit` spans of the haystack given,
810 /// delimited by a match of the regex. (A `limit` of `0` will return no
811 /// spans.) Namely, each element of the iterator corresponds to a part
812 /// of the haystack that *isn't* matched by the regular expression. The
813 /// remainder of the haystack that is not split will be the last element in
814 /// the iterator.
815 ///
816 /// # Example
817 ///
818 /// Get the first two words in some haystack:
819 ///
820 /// ```
821 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
822 /// use regex_automata::meta::Regex;
823 ///
824 /// let re = Regex::new(r"\W+").unwrap();
825 /// let hay = "Hey! How are you?";
826 /// let fields: Vec<&str> =
827 /// re.splitn(hay, 3).map(|span| &hay[span]).collect();
828 /// assert_eq!(fields, vec!["Hey", "How", "are you?"]);
829 ///
830 /// # Ok::<(), Box<dyn std::error::Error>>(())
831 /// ```
832 ///
833 /// # Examples: more cases
834 ///
835 /// ```
836 /// use regex_automata::meta::Regex;
837 ///
838 /// let re = Regex::new(r" ")?;
839 /// let hay = "Mary had a little lamb";
840 /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
841 /// assert_eq!(got, vec!["Mary", "had", "a little lamb"]);
842 ///
843 /// let re = Regex::new(r"X")?;
844 /// let hay = "";
845 /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
846 /// assert_eq!(got, vec![""]);
847 ///
848 /// let re = Regex::new(r"X")?;
849 /// let hay = "lionXXtigerXleopard";
850 /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
851 /// assert_eq!(got, vec!["lion", "", "tigerXleopard"]);
852 ///
853 /// let re = Regex::new(r"::")?;
854 /// let hay = "lion::tiger::leopard";
855 /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect();
856 /// assert_eq!(got, vec!["lion", "tiger::leopard"]);
857 ///
858 /// let re = Regex::new(r"X")?;
859 /// let hay = "abcXdef";
860 /// let got: Vec<&str> = re.splitn(hay, 1).map(|sp| &hay[sp]).collect();
861 /// assert_eq!(got, vec!["abcXdef"]);
862 ///
863 /// let re = Regex::new(r"X")?;
864 /// let hay = "abcdef";
865 /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect();
866 /// assert_eq!(got, vec!["abcdef"]);
867 ///
868 /// let re = Regex::new(r"X")?;
869 /// let hay = "abcXdef";
870 /// let got: Vec<&str> = re.splitn(hay, 0).map(|sp| &hay[sp]).collect();
871 /// assert!(got.is_empty());
872 ///
873 /// # Ok::<(), Box<dyn std::error::Error>>(())
874 /// ```
875 pub fn splitn<C: Cursor>(&self, input: Input<C>, limit: usize) -> SplitN<'_, C> {
876 SplitN { splits: self.split(input), limit }
877 }
878}
879
880/// Lower level search routines that give more control.
881impl Regex {
882 /// Returns the start and end offset of the leftmost match. If no match
883 /// exists, then `None` is returned.
884 ///
885 /// This is like [`Regex::find`] but, but it accepts a concrete `&Input`
886 /// instead of an `Into<Input>`.
887 ///
888 /// # Example
889 ///
890 /// ```
891 /// use regex_automata::{meta::Regex, Input, Match};
892 ///
893 /// let re = Regex::new(r"Samwise|Sam")?;
894 /// let input = Input::new(
895 /// "one of the chief characters, Samwise the Brave",
896 /// );
897 /// assert_eq!(Some(Match::must(0, 29..36)), re.search(&input));
898 ///
899 /// # Ok::<(), Box<dyn std::error::Error>>(())
900 /// ```
901 #[inline]
902 pub fn search<C: Cursor>(&self, mut input: Input<C>) -> Option<Match> {
903 if self.imp.info.is_impossible(&input) {
904 return None;
905 }
906 let mut guard = self.pool.get();
907 let result = self.imp.strat.search(&mut guard, &mut input);
908 // We do this dance with the guard and explicitly put it back in the
909 // pool because it seems to result in better codegen. If we let the
910 // guard's Drop impl put it back in the pool, then functions like
911 // ptr::drop_in_place get called and they *don't* get inlined. This
912 // isn't usually a big deal, but in latency sensitive benchmarks the
913 // extra function call can matter.
914 //
915 // I used `rebar measure -f '^grep/every-line$' -e meta` to measure
916 // the effects here.
917 //
918 // Note that this doesn't eliminate the latency effects of using the
919 // pool. There is still some (minor) cost for the "thread owner" of the
920 // pool. (i.e., The thread that first calls a regex search routine.)
921 // However, for other threads using the regex, the pool access can be
922 // quite expensive as it goes through a mutex. Callers can avoid this
923 // by either cloning the Regex (which creates a distinct copy of the
924 // pool), or callers can use the lower level APIs that accept a 'Cache'
925 // directly and do their own handling.
926 PoolGuard::put(guard);
927 result
928 }
929
930 /// Returns the end offset of the leftmost match. If no match exists, then
931 /// `None` is returned.
932 ///
933 /// This is distinct from [`Regex::search`] in that it only returns the end
934 /// of a match and not the start of the match. Depending on a variety of
935 /// implementation details, this _may_ permit the regex engine to do less
936 /// overall work. For example, if a DFA is being used to execute a search,
937 /// then the start of a match usually requires running a separate DFA in
938 /// reverse to the find the start of a match. If one only needs the end of
939 /// a match, then the separate reverse scan to find the start of a match
940 /// can be skipped. (Note that the reverse scan is avoided even when using
941 /// `Regex::search` when possible, for example, in the case of an anchored
942 /// search.)
943 ///
944 /// # Example
945 ///
946 /// ```
947 /// use regex_automata::{meta::Regex, Input, HalfMatch};
948 ///
949 /// let re = Regex::new(r"Samwise|Sam")?;
950 /// let input = Input::new(
951 /// "one of the chief characters, Samwise the Brave",
952 /// );
953 /// assert_eq!(Some(HalfMatch::must(0, 36)), re.search_half(&input));
954 ///
955 /// # Ok::<(), Box<dyn std::error::Error>>(())
956 /// ```
957 #[inline]
958 pub fn search_half<C: Cursor>(&self, mut input: Input<C>) -> Option<HalfMatch> {
959 if self.imp.info.is_impossible(&input) {
960 return None;
961 }
962 let mut guard = self.pool.get();
963 let result = self.imp.strat.search_half(&mut guard, &mut input);
964 // See 'Regex::search' for why we put the guard back explicitly.
965 PoolGuard::put(guard);
966 result
967 }
968
969 /// Executes a leftmost forward search and writes the spans of capturing
970 /// groups that participated in a match into the provided [`Captures`]
971 /// value. If no match was found, then [`Captures::is_match`] is guaranteed
972 /// to return `false`.
973 ///
974 /// This is like [`Regex::captures`], but it accepts a concrete `&Input`
975 /// instead of an `Into<Input>`.
976 ///
977 /// # Example: specific pattern search
978 ///
979 /// This example shows how to build a multi-pattern `Regex` that permits
980 /// searching for specific patterns.
981 ///
982 /// ```
983 /// use regex_automata::{
984 /// meta::Regex,
985 /// Anchored, Match, PatternID, Input,
986 /// };
987 ///
988 /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
989 /// let mut caps = re.create_captures();
990 /// let haystack = "foo123";
991 ///
992 /// // Since we are using the default leftmost-first match and both
993 /// // patterns match at the same starting position, only the first pattern
994 /// // will be returned in this case when doing a search for any of the
995 /// // patterns.
996 /// let expected = Some(Match::must(0, 0..6));
997 /// re.search_captures(&Input::new(haystack), &mut caps);
998 /// assert_eq!(expected, caps.get_match());
999 ///
1000 /// // But if we want to check whether some other pattern matches, then we
1001 /// // can provide its pattern ID.
1002 /// let expected = Some(Match::must(1, 0..6));
1003 /// let input = Input::new(haystack)
1004 /// .anchored(Anchored::Pattern(PatternID::must(1)));
1005 /// re.search_captures(&input, &mut caps);
1006 /// assert_eq!(expected, caps.get_match());
1007 ///
1008 /// # Ok::<(), Box<dyn std::error::Error>>(())
1009 /// ```
1010 ///
1011 /// # Example: specifying the bounds of a search
1012 ///
1013 /// This example shows how providing the bounds of a search can produce
1014 /// different results than simply sub-slicing the haystack.
1015 ///
1016 /// ```
1017 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1018 /// use regex_automata::{meta::Regex, Match, Input};
1019 ///
1020 /// let re = Regex::new(r"\b[0-9]{3}\b")?;
1021 /// let mut caps = re.create_captures();
1022 /// let haystack = "foo123bar";
1023 ///
1024 /// // Since we sub-slice the haystack, the search doesn't know about
1025 /// // the larger context and assumes that `123` is surrounded by word
1026 /// // boundaries. And of course, the match position is reported relative
1027 /// // to the sub-slice as well, which means we get `0..3` instead of
1028 /// // `3..6`.
1029 /// let expected = Some(Match::must(0, 0..3));
1030 /// let input = Input::new(&haystack[3..6]);
1031 /// re.search_captures(&input, &mut caps);
1032 /// assert_eq!(expected, caps.get_match());
1033 ///
1034 /// // But if we provide the bounds of the search within the context of the
1035 /// // entire haystack, then the search can take the surrounding context
1036 /// // into account. (And if we did find a match, it would be reported
1037 /// // as a valid offset into `haystack` instead of its sub-slice.)
1038 /// let expected = None;
1039 /// let input = Input::new(haystack).range(3..6);
1040 /// re.search_captures(&input, &mut caps);
1041 /// assert_eq!(expected, caps.get_match());
1042 ///
1043 /// # Ok::<(), Box<dyn std::error::Error>>(())
1044 /// ```
1045 #[inline]
1046 pub fn search_captures<C: Cursor>(&self, input: Input<C>, caps: &mut Captures) {
1047 caps.set_pattern(None);
1048 let pid = self.search_slots(input, caps.slots_mut());
1049 caps.set_pattern(pid);
1050 }
1051
1052 /// Executes a leftmost forward search and writes the spans of capturing
1053 /// groups that participated in a match into the provided `slots`, and
1054 /// returns the matching pattern ID. The contents of the slots for patterns
1055 /// other than the matching pattern are unspecified. If no match was found,
1056 /// then `None` is returned and the contents of `slots` is unspecified.
1057 ///
1058 /// This is like [`Regex::search`], but it accepts a raw slots slice
1059 /// instead of a `Captures` value. This is useful in contexts where you
1060 /// don't want or need to allocate a `Captures`.
1061 ///
1062 /// It is legal to pass _any_ number of slots to this routine. If the regex
1063 /// engine would otherwise write a slot offset that doesn't fit in the
1064 /// provided slice, then it is simply skipped. In general though, there are
1065 /// usually three slice lengths you might want to use:
1066 ///
1067 /// * An empty slice, if you only care about which pattern matched.
1068 /// * A slice with [`pattern_len() * 2`](Regex::pattern_len) slots, if you
1069 /// only care about the overall match spans for each matching pattern.
1070 /// * A slice with
1071 /// [`slot_len()`](crate::util::captures::GroupInfo::slot_len) slots, which
1072 /// permits recording match offsets for every capturing group in every
1073 /// pattern.
1074 ///
1075 /// # Example
1076 ///
1077 /// This example shows how to find the overall match offsets in a
1078 /// multi-pattern search without allocating a `Captures` value. Indeed, we
1079 /// can put our slots right on the stack.
1080 ///
1081 /// ```
1082 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1083 /// use regex_automata::{meta::Regex, PatternID, Input};
1084 ///
1085 /// let re = Regex::new_many(&[
1086 /// r"\pL+",
1087 /// r"\d+",
1088 /// ])?;
1089 /// let input = Input::new("!@#123");
1090 ///
1091 /// // We only care about the overall match offsets here, so we just
1092 /// // allocate two slots for each pattern. Each slot records the start
1093 /// // and end of the match.
1094 /// let mut slots = [None; 4];
1095 /// let pid = re.search_slots(&input, &mut slots);
1096 /// assert_eq!(Some(PatternID::must(1)), pid);
1097 ///
1098 /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
1099 /// // See 'GroupInfo' for more details on the mapping between groups and
1100 /// // slot indices.
1101 /// let slot_start = pid.unwrap().as_usize() * 2;
1102 /// let slot_end = slot_start + 1;
1103 /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get()));
1104 /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get()));
1105 ///
1106 /// # Ok::<(), Box<dyn std::error::Error>>(())
1107 /// ```
1108 #[inline]
1109 pub fn search_slots<C: Cursor>(
1110 &self,
1111 mut input: Input<C>,
1112 slots: &mut [Option<NonMaxUsize>],
1113 ) -> Option<PatternID> {
1114 if self.imp.info.is_impossible(&input) {
1115 return None;
1116 }
1117 let mut guard = self.pool.get();
1118 let result = self.imp.strat.search_slots(&mut guard, &mut input, slots);
1119 // See 'Regex::search' for why we put the guard back explicitly.
1120 PoolGuard::put(guard);
1121 result
1122 }
1123
1124 // /// Writes the set of patterns that match anywhere in the given search
1125 // /// configuration to `patset`. If multiple patterns match at the same
1126 // /// position and this `Regex` was configured with [`MatchKind::All`]
1127 // /// semantics, then all matching patterns are written to the given set.
1128 // ///
1129 // /// Unless all of the patterns in this `Regex` are anchored, then generally
1130 // /// speaking, this will scan the entire haystack.
1131 // ///
1132 // /// This search routine *does not* clear the pattern set. This gives some
1133 // /// flexibility to the caller (e.g., running multiple searches with the
1134 // /// same pattern set), but does make the API bug-prone if you're reusing
1135 // /// the same pattern set for multiple searches but intended them to be
1136 // /// independent.
1137 // ///
1138 // /// If a pattern ID matched but the given `PatternSet` does not have
1139 // /// sufficient capacity to store it, then it is not inserted and silently
1140 // /// dropped.
1141 // ///
1142 // /// # Example
1143 // ///
1144 // /// This example shows how to find all matching patterns in a haystack,
1145 // /// even when some patterns match at the same position as other patterns.
1146 // /// It is important that we configure the `Regex` with [`MatchKind::All`]
1147 // /// semantics here, or else overlapping matches will not be reported.
1148 // ///
1149 // /// ```
1150 // /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1151 // /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet};
1152 // ///
1153 // /// let patterns = &[
1154 // /// r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar",
1155 // /// ];
1156 // /// let re = Regex::builder()
1157 // /// .configure(Regex::config().match_kind(MatchKind::All))
1158 // /// .build_many(patterns)?;
1159 // ///
1160 // /// let input = Input::new("foobar");
1161 // /// let mut patset = PatternSet::new(re.pattern_len());
1162 // /// re.which_overlapping_matches(&input, &mut patset);
1163 // /// let expected = vec![0, 2, 3, 4, 6];
1164 // /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
1165 // /// assert_eq!(expected, got);
1166 // ///
1167 // /// # Ok::<(), Box<dyn std::error::Error>>(())
1168 // /// ```
1169 // #[inline]
1170 // pub fn which_overlapping_matches<C: Cursor>(&self, mut input: Input<C>, patset: &mut PatternSet) {
1171 // if self.imp.info.is_impossible(input) {
1172 // return;
1173 // }
1174 // let mut guard = self.pool.get();
1175 // let result = self.imp.strat.which_overlapping_matches(&mut guard, input, patset);
1176 // // See 'Regex::search' for why we put the guard back explicitly.
1177 // PoolGuard::put(guard);
1178 // result
1179 // }
1180}
1181
1182/// Lower level search routines that give more control, and require the caller
1183/// to provide an explicit [`Cache`] parameter.
1184impl Regex {
1185 /// This is like [`Regex::search`], but requires the caller to
1186 /// explicitly pass a [`Cache`].
1187 ///
1188 /// # Why pass a `Cache` explicitly?
1189 ///
1190 /// Passing a `Cache` explicitly will bypass the use of an internal memory
1191 /// pool used by `Regex` to get a `Cache` for a search. The use of this
1192 /// pool can be slower in some cases when a `Regex` is used from multiple
1193 /// threads simultaneously. Typically, performance only becomes an issue
1194 /// when there is heavy contention, which in turn usually only occurs
1195 /// when each thread's primary unit of work is a regex search on a small
1196 /// haystack.
1197 ///
1198 /// # Example
1199 ///
1200 /// ```
1201 /// use regex_automata::{meta::Regex, Input, Match};
1202 ///
1203 /// let re = Regex::new(r"Samwise|Sam")?;
1204 /// let mut cache = re.create_cache();
1205 /// let input = Input::new(
1206 /// "one of the chief characters, Samwise the Brave",
1207 /// );
1208 /// assert_eq!(
1209 /// Some(Match::must(0, 29..36)),
1210 /// re.search_with(&mut cache, &input),
1211 /// );
1212 ///
1213 /// # Ok::<(), Box<dyn std::error::Error>>(())
1214 /// ```
1215 #[inline]
1216 pub fn search_with<C: Cursor>(&self, cache: &mut Cache, input: &mut Input<C>) -> Option<Match> {
1217 if self.imp.info.is_impossible(input) {
1218 return None;
1219 }
1220 self.imp.strat.search(cache, input)
1221 }
1222
1223 /// This is like [`Regex::search_half`], but requires the caller to
1224 /// explicitly pass a [`Cache`].
1225 ///
1226 /// # Why pass a `Cache` explicitly?
1227 ///
1228 /// Passing a `Cache` explicitly will bypass the use of an internal memory
1229 /// pool used by `Regex` to get a `Cache` for a search. The use of this
1230 /// pool can be slower in some cases when a `Regex` is used from multiple
1231 /// threads simultaneously. Typically, performance only becomes an issue
1232 /// when there is heavy contention, which in turn usually only occurs
1233 /// when each thread's primary unit of work is a regex search on a small
1234 /// haystack.
1235 ///
1236 /// # Example
1237 ///
1238 /// ```
1239 /// use regex_automata::{meta::Regex, Input, HalfMatch};
1240 ///
1241 /// let re = Regex::new(r"Samwise|Sam")?;
1242 /// let mut cache = re.create_cache();
1243 /// let input = Input::new(
1244 /// "one of the chief characters, Samwise the Brave",
1245 /// );
1246 /// assert_eq!(
1247 /// Some(HalfMatch::must(0, 36)),
1248 /// re.search_half_with(&mut cache, &input),
1249 /// );
1250 ///
1251 /// # Ok::<(), Box<dyn std::error::Error>>(())
1252 /// ```
1253 #[inline]
1254 pub fn search_half_with<C: Cursor>(
1255 &self,
1256 cache: &mut Cache,
1257 input: &mut Input<C>,
1258 ) -> Option<HalfMatch> {
1259 if self.imp.info.is_impossible(input) {
1260 return None;
1261 }
1262 self.imp.strat.search_half(cache, input)
1263 }
1264
1265 /// This is like [`Regex::search_captures`], but requires the caller to
1266 /// explicitly pass a [`Cache`].
1267 ///
1268 /// # Why pass a `Cache` explicitly?
1269 ///
1270 /// Passing a `Cache` explicitly will bypass the use of an internal memory
1271 /// pool used by `Regex` to get a `Cache` for a search. The use of this
1272 /// pool can be slower in some cases when a `Regex` is used from multiple
1273 /// threads simultaneously. Typically, performance only becomes an issue
1274 /// when there is heavy contention, which in turn usually only occurs
1275 /// when each thread's primary unit of work is a regex search on a small
1276 /// haystack.
1277 ///
1278 /// # Example: specific pattern search
1279 ///
1280 /// This example shows how to build a multi-pattern `Regex` that permits
1281 /// searching for specific patterns.
1282 ///
1283 /// ```
1284 /// use regex_automata::{
1285 /// meta::Regex,
1286 /// Anchored, Match, PatternID, Input,
1287 /// };
1288 ///
1289 /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
1290 /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1291 /// let haystack = "foo123";
1292 ///
1293 /// // Since we are using the default leftmost-first match and both
1294 /// // patterns match at the same starting position, only the first pattern
1295 /// // will be returned in this case when doing a search for any of the
1296 /// // patterns.
1297 /// let expected = Some(Match::must(0, 0..6));
1298 /// re.search_captures_with(&mut cache, &Input::new(haystack), &mut caps);
1299 /// assert_eq!(expected, caps.get_match());
1300 ///
1301 /// // But if we want to check whether some other pattern matches, then we
1302 /// // can provide its pattern ID.
1303 /// let expected = Some(Match::must(1, 0..6));
1304 /// let input = Input::new(haystack)
1305 /// .anchored(Anchored::Pattern(PatternID::must(1)));
1306 /// re.search_captures_with(&mut cache, &input, &mut caps);
1307 /// assert_eq!(expected, caps.get_match());
1308 ///
1309 /// # Ok::<(), Box<dyn std::error::Error>>(())
1310 /// ```
1311 ///
1312 /// # Example: specifying the bounds of a search
1313 ///
1314 /// This example shows how providing the bounds of a search can produce
1315 /// different results than simply sub-slicing the haystack.
1316 ///
1317 /// ```
1318 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1319 /// use regex_automata::{meta::Regex, Match, Input};
1320 ///
1321 /// let re = Regex::new(r"\b[0-9]{3}\b")?;
1322 /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1323 /// let haystack = "foo123bar";
1324 ///
1325 /// // Since we sub-slice the haystack, the search doesn't know about
1326 /// // the larger context and assumes that `123` is surrounded by word
1327 /// // boundaries. And of course, the match position is reported relative
1328 /// // to the sub-slice as well, which means we get `0..3` instead of
1329 /// // `3..6`.
1330 /// let expected = Some(Match::must(0, 0..3));
1331 /// let input = Input::new(&haystack[3..6]);
1332 /// re.search_captures_with(&mut cache, &input, &mut caps);
1333 /// assert_eq!(expected, caps.get_match());
1334 ///
1335 /// // But if we provide the bounds of the search within the context of the
1336 /// // entire haystack, then the search can take the surrounding context
1337 /// // into account. (And if we did find a match, it would be reported
1338 /// // as a valid offset into `haystack` instead of its sub-slice.)
1339 /// let expected = None;
1340 /// let input = Input::new(haystack).range(3..6);
1341 /// re.search_captures_with(&mut cache, &input, &mut caps);
1342 /// assert_eq!(expected, caps.get_match());
1343 ///
1344 /// # Ok::<(), Box<dyn std::error::Error>>(())
1345 /// ```
1346 #[inline]
1347 pub fn search_captures_with<C: Cursor>(
1348 &self,
1349 cache: &mut Cache,
1350 input: &mut Input<C>,
1351 caps: &mut Captures,
1352 ) {
1353 caps.set_pattern(None);
1354 let pid = self.search_slots_with(cache, input, caps.slots_mut());
1355 caps.set_pattern(pid);
1356 }
1357
1358 /// This is like [`Regex::search_slots`], but requires the caller to
1359 /// explicitly pass a [`Cache`].
1360 ///
1361 /// # Why pass a `Cache` explicitly?
1362 ///
1363 /// Passing a `Cache` explicitly will bypass the use of an internal memory
1364 /// pool used by `Regex` to get a `Cache` for a search. The use of this
1365 /// pool can be slower in some cases when a `Regex` is used from multiple
1366 /// threads simultaneously. Typically, performance only becomes an issue
1367 /// when there is heavy contention, which in turn usually only occurs
1368 /// when each thread's primary unit of work is a regex search on a small
1369 /// haystack.
1370 ///
1371 /// # Example
1372 ///
1373 /// This example shows how to find the overall match offsets in a
1374 /// multi-pattern search without allocating a `Captures` value. Indeed, we
1375 /// can put our slots right on the stack.
1376 ///
1377 /// ```
1378 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1379 /// use regex_automata::{meta::Regex, PatternID, Input};
1380 ///
1381 /// let re = Regex::new_many(&[
1382 /// r"\pL+",
1383 /// r"\d+",
1384 /// ])?;
1385 /// let mut cache = re.create_cache();
1386 /// let input = Input::new("!@#123");
1387 ///
1388 /// // We only care about the overall match offsets here, so we just
1389 /// // allocate two slots for each pattern. Each slot records the start
1390 /// // and end of the match.
1391 /// let mut slots = [None; 4];
1392 /// let pid = re.search_slots_with(&mut cache, &input, &mut slots);
1393 /// assert_eq!(Some(PatternID::must(1)), pid);
1394 ///
1395 /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
1396 /// // See 'GroupInfo' for more details on the mapping between groups and
1397 /// // slot indices.
1398 /// let slot_start = pid.unwrap().as_usize() * 2;
1399 /// let slot_end = slot_start + 1;
1400 /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get()));
1401 /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get()));
1402 ///
1403 /// # Ok::<(), Box<dyn std::error::Error>>(())
1404 /// ```
1405 #[inline]
1406 pub fn search_slots_with<C: Cursor>(
1407 &self,
1408 cache: &mut Cache,
1409 input: &mut Input<C>,
1410 slots: &mut [Option<NonMaxUsize>],
1411 ) -> Option<PatternID> {
1412 if self.imp.info.is_impossible(input) {
1413 return None;
1414 }
1415 self.imp.strat.search_slots(cache, input, slots)
1416 }
1417}
1418
1419/// Various non-search routines for querying properties of a `Regex` and
1420/// convenience routines for creating [`Captures`] and [`Cache`] values.
1421impl Regex {
1422 /// Creates a new object for recording capture group offsets. This is used
1423 /// in search APIs like [`Regex::captures`] and [`Regex::search_captures`].
1424 ///
1425 /// This is a convenience routine for
1426 /// `Captures::all(re.group_info().clone())`. Callers may build other types
1427 /// of `Captures` values that record less information (and thus require
1428 /// less work from the regex engine) using [`Captures::matches`] and
1429 /// [`Captures::empty`].
1430 ///
1431 /// # Example
1432 ///
1433 /// This shows some alternatives to [`Regex::create_captures`]:
1434 ///
1435 /// ```
1436 /// use regex_automata::{
1437 /// meta::Regex,
1438 /// util::captures::Captures,
1439 /// Match, PatternID, Span,
1440 /// };
1441 ///
1442 /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)")?;
1443 ///
1444 /// // This is equivalent to Regex::create_captures. It stores matching
1445 /// // offsets for all groups in the regex.
1446 /// let mut all = Captures::all(re.group_info().clone());
1447 /// re.captures("Bruce Springsteen", &mut all);
1448 /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match());
1449 /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first"));
1450 /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last"));
1451 ///
1452 /// // In this version, we only care about the implicit groups, which
1453 /// // means offsets for the explicit groups will be unavailable. It can
1454 /// // sometimes be faster to ask for fewer groups, since the underlying
1455 /// // regex engine needs to do less work to keep track of them.
1456 /// let mut matches = Captures::matches(re.group_info().clone());
1457 /// re.captures("Bruce Springsteen", &mut matches);
1458 /// // We still get the overall match info.
1459 /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match());
1460 /// // But now the explicit groups are unavailable.
1461 /// assert_eq!(None, matches.get_group_by_name("first"));
1462 /// assert_eq!(None, matches.get_group_by_name("last"));
1463 ///
1464 /// // Finally, in this version, we don't ask to keep track of offsets for
1465 /// // *any* groups. All we get back is whether a match occurred, and if
1466 /// // so, the ID of the pattern that matched.
1467 /// let mut empty = Captures::empty(re.group_info().clone());
1468 /// re.captures("Bruce Springsteen", &mut empty);
1469 /// // it's a match!
1470 /// assert!(empty.is_match());
1471 /// // for pattern ID 0
1472 /// assert_eq!(Some(PatternID::ZERO), empty.pattern());
1473 /// // Match offsets are unavailable.
1474 /// assert_eq!(None, empty.get_match());
1475 /// // And of course, explicit groups are unavailable too.
1476 /// assert_eq!(None, empty.get_group_by_name("first"));
1477 /// assert_eq!(None, empty.get_group_by_name("last"));
1478 ///
1479 /// # Ok::<(), Box<dyn std::error::Error>>(())
1480 /// ```
1481 pub fn create_captures(&self) -> Captures {
1482 Captures::all(self.group_info().clone())
1483 }
1484
1485 /// Creates a new cache for use with lower level search APIs like
1486 /// [`Regex::search_with`].
1487 ///
1488 /// The cache returned should only be used for searches for this `Regex`.
1489 /// If you want to reuse the cache for another `Regex`, then you must call
1490 /// [`Cache::reset`] with that `Regex`.
1491 ///
1492 /// This is a convenience routine for [`Cache::new`].
1493 ///
1494 /// # Example
1495 ///
1496 /// ```
1497 /// use regex_automata::{meta::Regex, Input, Match};
1498 ///
1499 /// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?;
1500 /// let mut cache = re.create_cache();
1501 /// let input = Input::new("crazy janey and her mission man");
1502 /// assert_eq!(
1503 /// Some(Match::must(0, 20..31)),
1504 /// re.search_with(&mut cache, &input),
1505 /// );
1506 ///
1507 /// # Ok::<(), Box<dyn std::error::Error>>(())
1508 /// ```
1509 pub fn create_cache(&self) -> Cache {
1510 self.imp.strat.create_cache()
1511 }
1512
1513 /// Returns the total number of patterns in this regex.
1514 ///
1515 /// The standard [`Regex::new`] constructor always results in a `Regex`
1516 /// with a single pattern, but [`Regex::new_many`] permits building a
1517 /// multi-pattern regex.
1518 ///
1519 /// A `Regex` guarantees that the maximum possible `PatternID` returned in
1520 /// any match is `Regex::pattern_len() - 1`. In the case where the number
1521 /// of patterns is `0`, a match is impossible.
1522 ///
1523 /// # Example
1524 ///
1525 /// ```
1526 /// use regex_automata::meta::Regex;
1527 ///
1528 /// let re = Regex::new(r"(?m)^[a-z]$")?;
1529 /// assert_eq!(1, re.pattern_len());
1530 ///
1531 /// let re = Regex::new_many::<&str>(&[])?;
1532 /// assert_eq!(0, re.pattern_len());
1533 ///
1534 /// let re = Regex::new_many(&["a", "b", "c"])?;
1535 /// assert_eq!(3, re.pattern_len());
1536 ///
1537 /// # Ok::<(), Box<dyn std::error::Error>>(())
1538 /// ```
1539 pub fn pattern_len(&self) -> usize {
1540 self.imp.info.pattern_len()
1541 }
1542
1543 /// Returns the total number of capturing groups.
1544 ///
1545 /// This includes the implicit capturing group corresponding to the
1546 /// entire match. Therefore, the minimum value returned is `1`.
1547 ///
1548 /// # Example
1549 ///
1550 /// This shows a few patterns and how many capture groups they have.
1551 ///
1552 /// ```
1553 /// use regex_automata::meta::Regex;
1554 ///
1555 /// let len = |pattern| {
1556 /// Regex::new(pattern).map(|re| re.captures_len())
1557 /// };
1558 ///
1559 /// assert_eq!(1, len("a")?);
1560 /// assert_eq!(2, len("(a)")?);
1561 /// assert_eq!(3, len("(a)|(b)")?);
1562 /// assert_eq!(5, len("(a)(b)|(c)(d)")?);
1563 /// assert_eq!(2, len("(a)|b")?);
1564 /// assert_eq!(2, len("a|(b)")?);
1565 /// assert_eq!(2, len("(b)*")?);
1566 /// assert_eq!(2, len("(b)+")?);
1567 ///
1568 /// # Ok::<(), Box<dyn std::error::Error>>(())
1569 /// ```
1570 ///
1571 /// # Example: multiple patterns
1572 ///
1573 /// This routine also works for multiple patterns. The total number is
1574 /// the sum of the capture groups of each pattern.
1575 ///
1576 /// ```
1577 /// use regex_automata::meta::Regex;
1578 ///
1579 /// let len = |patterns| {
1580 /// Regex::new_many(patterns).map(|re| re.captures_len())
1581 /// };
1582 ///
1583 /// assert_eq!(2, len(&["a", "b"])?);
1584 /// assert_eq!(4, len(&["(a)", "(b)"])?);
1585 /// assert_eq!(6, len(&["(a)|(b)", "(c)|(d)"])?);
1586 /// assert_eq!(8, len(&["(a)(b)|(c)(d)", "(x)(y)"])?);
1587 /// assert_eq!(3, len(&["(a)", "b"])?);
1588 /// assert_eq!(3, len(&["a", "(b)"])?);
1589 /// assert_eq!(4, len(&["(a)", "(b)*"])?);
1590 /// assert_eq!(4, len(&["(a)+", "(b)+"])?);
1591 ///
1592 /// # Ok::<(), Box<dyn std::error::Error>>(())
1593 /// ```
1594 pub fn captures_len(&self) -> usize {
1595 self.imp.info.props_union().explicit_captures_len().saturating_add(self.pattern_len())
1596 }
1597
1598 /// Returns the total number of capturing groups that appear in every
1599 /// possible match.
1600 ///
1601 /// If the number of capture groups can vary depending on the match, then
1602 /// this returns `None`. That is, a value is only returned when the number
1603 /// of matching groups is invariant or "static."
1604 ///
1605 /// Note that like [`Regex::captures_len`], this **does** include the
1606 /// implicit capturing group corresponding to the entire match. Therefore,
1607 /// when a non-None value is returned, it is guaranteed to be at least `1`.
1608 /// Stated differently, a return value of `Some(0)` is impossible.
1609 ///
1610 /// # Example
1611 ///
1612 /// This shows a few cases where a static number of capture groups is
1613 /// available and a few cases where it is not.
1614 ///
1615 /// ```
1616 /// use regex_automata::meta::Regex;
1617 ///
1618 /// let len = |pattern| {
1619 /// Regex::new(pattern).map(|re| re.static_captures_len())
1620 /// };
1621 ///
1622 /// assert_eq!(Some(1), len("a")?);
1623 /// assert_eq!(Some(2), len("(a)")?);
1624 /// assert_eq!(Some(2), len("(a)|(b)")?);
1625 /// assert_eq!(Some(3), len("(a)(b)|(c)(d)")?);
1626 /// assert_eq!(None, len("(a)|b")?);
1627 /// assert_eq!(None, len("a|(b)")?);
1628 /// assert_eq!(None, len("(b)*")?);
1629 /// assert_eq!(Some(2), len("(b)+")?);
1630 ///
1631 /// # Ok::<(), Box<dyn std::error::Error>>(())
1632 /// ```
1633 ///
1634 /// # Example: multiple patterns
1635 ///
1636 /// This property extends to regexes with multiple patterns as well. In
1637 /// order for their to be a static number of capture groups in this case,
1638 /// every pattern must have the same static number.
1639 ///
1640 /// ```
1641 /// use regex_automata::meta::Regex;
1642 ///
1643 /// let len = |patterns| {
1644 /// Regex::new_many(patterns).map(|re| re.static_captures_len())
1645 /// };
1646 ///
1647 /// assert_eq!(Some(1), len(&["a", "b"])?);
1648 /// assert_eq!(Some(2), len(&["(a)", "(b)"])?);
1649 /// assert_eq!(Some(2), len(&["(a)|(b)", "(c)|(d)"])?);
1650 /// assert_eq!(Some(3), len(&["(a)(b)|(c)(d)", "(x)(y)"])?);
1651 /// assert_eq!(None, len(&["(a)", "b"])?);
1652 /// assert_eq!(None, len(&["a", "(b)"])?);
1653 /// assert_eq!(None, len(&["(a)", "(b)*"])?);
1654 /// assert_eq!(Some(2), len(&["(a)+", "(b)+"])?);
1655 ///
1656 /// # Ok::<(), Box<dyn std::error::Error>>(())
1657 /// ```
1658 #[inline]
1659 pub fn static_captures_len(&self) -> Option<usize> {
1660 self.imp.info.props_union().static_explicit_captures_len().map(|len| len.saturating_add(1))
1661 }
1662
1663 /// Return information about the capture groups in this `Regex`.
1664 ///
1665 /// A `GroupInfo` is an immutable object that can be cheaply cloned. It
1666 /// is responsible for maintaining a mapping between the capture groups
1667 /// in the concrete syntax of zero or more regex patterns and their
1668 /// internal representation used by some of the regex matchers. It is also
1669 /// responsible for maintaining a mapping between the name of each group
1670 /// (if one exists) and its corresponding group index.
1671 ///
1672 /// A `GroupInfo` is ultimately what is used to build a [`Captures`] value,
1673 /// which is some mutable space where group offsets are stored as a result
1674 /// of a search.
1675 ///
1676 /// # Example
1677 ///
1678 /// This shows some alternatives to [`Regex::create_captures`]:
1679 ///
1680 /// ```
1681 /// use regex_automata::{
1682 /// meta::Regex,
1683 /// util::captures::Captures,
1684 /// Match, PatternID, Span,
1685 /// };
1686 ///
1687 /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)")?;
1688 ///
1689 /// // This is equivalent to Regex::create_captures. It stores matching
1690 /// // offsets for all groups in the regex.
1691 /// let mut all = Captures::all(re.group_info().clone());
1692 /// re.captures("Bruce Springsteen", &mut all);
1693 /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match());
1694 /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first"));
1695 /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last"));
1696 ///
1697 /// // In this version, we only care about the implicit groups, which
1698 /// // means offsets for the explicit groups will be unavailable. It can
1699 /// // sometimes be faster to ask for fewer groups, since the underlying
1700 /// // regex engine needs to do less work to keep track of them.
1701 /// let mut matches = Captures::matches(re.group_info().clone());
1702 /// re.captures("Bruce Springsteen", &mut matches);
1703 /// // We still get the overall match info.
1704 /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match());
1705 /// // But now the explicit groups are unavailable.
1706 /// assert_eq!(None, matches.get_group_by_name("first"));
1707 /// assert_eq!(None, matches.get_group_by_name("last"));
1708 ///
1709 /// // Finally, in this version, we don't ask to keep track of offsets for
1710 /// // *any* groups. All we get back is whether a match occurred, and if
1711 /// // so, the ID of the pattern that matched.
1712 /// let mut empty = Captures::empty(re.group_info().clone());
1713 /// re.captures("Bruce Springsteen", &mut empty);
1714 /// // it's a match!
1715 /// assert!(empty.is_match());
1716 /// // for pattern ID 0
1717 /// assert_eq!(Some(PatternID::ZERO), empty.pattern());
1718 /// // Match offsets are unavailable.
1719 /// assert_eq!(None, empty.get_match());
1720 /// // And of course, explicit groups are unavailable too.
1721 /// assert_eq!(None, empty.get_group_by_name("first"));
1722 /// assert_eq!(None, empty.get_group_by_name("last"));
1723 ///
1724 /// # Ok::<(), Box<dyn std::error::Error>>(())
1725 /// ```
1726 #[inline]
1727 pub fn group_info(&self) -> &GroupInfo {
1728 self.imp.strat.group_info()
1729 }
1730
1731 /// Returns the configuration object used to build this `Regex`.
1732 ///
1733 /// If no configuration object was explicitly passed, then the
1734 /// configuration returned represents the default.
1735 #[inline]
1736 pub fn get_config(&self) -> &Config {
1737 self.imp.info.config()
1738 }
1739
1740 /// Returns true if this regex has a high chance of being "accelerated."
1741 ///
1742 /// The precise meaning of "accelerated" is specifically left unspecified,
1743 /// but the general meaning is that the search is a high likelihood of
1744 /// running faster than than a character-at-a-time loop inside a standard
1745 /// regex engine.
1746 ///
1747 /// When a regex is accelerated, it is only a *probabilistic* claim. That
1748 /// is, just because the regex is believed to be accelerated, that doesn't
1749 /// mean it will definitely execute searches very fast. Similarly, if a
1750 /// regex is *not* accelerated, that is also a probabilistic claim. That
1751 /// is, a regex for which `is_accelerated` returns `false` could still run
1752 /// searches more quickly than a regex for which `is_accelerated` returns
1753 /// `true`.
1754 ///
1755 /// Whether a regex is marked as accelerated or not is dependent on
1756 /// implementations details that may change in a semver compatible release.
1757 /// That is, a regex that is accelerated in a `x.y.1` release might not be
1758 /// accelerated in a `x.y.2` release.
1759 ///
1760 /// Basically, the value of acceleration boils down to a hedge: a hodge
1761 /// podge of internal heuristics combine to make a probabilistic guess
1762 /// that this regex search may run "fast." The value in knowing this from
1763 /// a caller's perspective is that it may act as a signal that no further
1764 /// work should be done to accelerate a search. For example, a grep-like
1765 /// tool might try to do some extra work extracting literals from a regex
1766 /// to create its own heuristic acceleration strategies. But it might
1767 /// choose to defer to this crate's acceleration strategy if one exists.
1768 /// This routine permits querying whether such a strategy is active for a
1769 /// particular regex.
1770 ///
1771 /// # Example
1772 ///
1773 /// ```
1774 /// use regex_automata::meta::Regex;
1775 ///
1776 /// // A simple literal is very likely to be accelerated.
1777 /// let re = Regex::new(r"foo")?;
1778 /// assert!(re.is_accelerated());
1779 ///
1780 /// // A regex with no literals is likely to not be accelerated.
1781 /// let re = Regex::new(r"\w")?;
1782 /// assert!(!re.is_accelerated());
1783 ///
1784 /// # Ok::<(), Box<dyn std::error::Error>>(())
1785 /// ```
1786 #[inline]
1787 pub fn is_accelerated(&self) -> bool {
1788 self.imp.strat.is_accelerated()
1789 }
1790
1791 /// Return the total approximate heap memory, in bytes, used by this `Regex`.
1792 ///
1793 /// Note that currently, there is no high level configuration for setting
1794 /// a limit on the specific value returned by this routine. Instead, the
1795 /// following routines can be used to control heap memory at a bit of a
1796 /// lower level:
1797 ///
1798 /// * [`Config::nfa_size_limit`] controls how big _any_ of the NFAs are
1799 /// allowed to be.
1800 /// * [`Config::onepass_size_limit`] controls how big the one-pass DFA is
1801 /// allowed to be.
1802 /// * [`Config::hybrid_cache_capacity`] controls how much memory the lazy
1803 /// DFA is permitted to allocate to store its transition table.
1804 /// * [`Config::dfa_size_limit`] controls how big a fully compiled DFA is
1805 /// allowed to be.
1806 /// * [`Config::dfa_state_limit`] controls the conditions under which the
1807 /// meta regex engine will even attempt to build a fully compiled DFA.
1808 #[inline]
1809 pub fn memory_usage(&self) -> usize {
1810 self.imp.strat.memory_usage()
1811 }
1812}
1813
1814impl Clone for Regex {
1815 fn clone(&self) -> Self {
1816 let imp = Arc::clone(&self.imp);
1817 let pool = {
1818 let strat = Arc::clone(&imp.strat);
1819 let create: CachePoolFn = Box::new(move || strat.create_cache());
1820 Pool::new(create)
1821 };
1822 Regex { imp, pool }
1823 }
1824}
1825
1826#[derive(Clone, Debug)]
1827pub(crate) struct RegexInfo(Arc<RegexInfoI>);
1828
1829#[derive(Clone, Debug)]
1830struct RegexInfoI {
1831 config: Config,
1832 props: Vec<hir::Properties>,
1833 props_union: hir::Properties,
1834}
1835
1836impl RegexInfo {
1837 fn new(config: Config, hirs: &[&Hir]) -> RegexInfo {
1838 // Collect all of the properties from each of the HIRs, and also
1839 // union them into one big set of properties representing all HIRs
1840 // as if they were in one big alternation.
1841 let mut props = vec![];
1842 for hir in hirs.iter() {
1843 props.push(hir.properties().clone());
1844 }
1845 let props_union = hir::Properties::union(&props);
1846
1847 RegexInfo(Arc::new(RegexInfoI { config, props, props_union }))
1848 }
1849
1850 pub(crate) fn config(&self) -> &Config {
1851 &self.0.config
1852 }
1853
1854 pub(crate) fn props(&self) -> &[hir::Properties] {
1855 &self.0.props
1856 }
1857
1858 pub(crate) fn props_union(&self) -> &hir::Properties {
1859 &self.0.props_union
1860 }
1861
1862 pub(crate) fn pattern_len(&self) -> usize {
1863 self.props().len()
1864 }
1865
1866 pub(crate) fn memory_usage(&self) -> usize {
1867 self.props().iter().map(|p| p.memory_usage()).sum::<usize>()
1868 + self.props_union().memory_usage()
1869 }
1870
1871 /// Returns true when the search is guaranteed to be anchored. That is,
1872 /// when a match is reported, its offset is guaranteed to correspond to
1873 /// the start of the search.
1874 ///
1875 /// This includes returning true when `input` _isn't_ anchored but the
1876 /// underlying regex is.
1877 #[cfg_attr(feature = "perf-inline", inline(always))]
1878 pub(crate) fn is_anchored_start(&self, input: &Input<impl Cursor>) -> bool {
1879 input.get_anchored().is_anchored() || self.is_always_anchored_start()
1880 }
1881
1882 /// Returns true when this regex is always anchored to the start of a
1883 /// search. And in particular, that regardless of an `Input` configuration,
1884 /// if any match is reported it must start at `0`.
1885 #[cfg_attr(feature = "perf-inline", inline(always))]
1886 pub(crate) fn is_always_anchored_start(&self) -> bool {
1887 use regex_syntax::hir::Look;
1888 self.props_union().look_set_prefix().contains(Look::Start)
1889 }
1890
1891 /// Returns true when this regex is always anchored to the end of a
1892 /// search. And in particular, that regardless of an `Input` configuration,
1893 /// if any match is reported it must end at the end of the haystack.
1894 #[cfg_attr(feature = "perf-inline", inline(always))]
1895 pub(crate) fn is_always_anchored_end(&self) -> bool {
1896 use regex_syntax::hir::Look;
1897 self.props_union().look_set_suffix().contains(Look::End)
1898 }
1899
1900 /// Returns true if and only if it is known that a match is impossible
1901 /// for the given input. This is useful for short-circuiting and avoiding
1902 /// running the regex engine if it's known no match can be reported.
1903 ///
1904 /// Note that this doesn't necessarily detect every possible case. For
1905 /// example, when `pattern_len() == 0`, a match is impossible, but that
1906 /// case is so rare that it's fine to be handled by the regex engine
1907 /// itself. That is, it's not worth the cost of adding it here in order to
1908 /// make it a little faster. The reason is that this is called for every
1909 /// search. so there is some cost to adding checks here. Arguably, some of
1910 /// the checks that are here already probably shouldn't be here...
1911 #[cfg_attr(feature = "perf-inline", inline(always))]
1912 fn is_impossible<C: Cursor>(&self, input: &Input<C>) -> bool {
1913 // The underlying regex is anchored, so if we don't start the search
1914 // at position 0, a match is impossible, because the anchor can only
1915 // match at position 0.
1916 if input.start() != input.slice_span.start && self.is_always_anchored_start() {
1917 return true;
1918 }
1919 // // Same idea, but for the end anchor.
1920 // if input.end() < input.haystack().len() && self.is_always_anchored_end() {
1921 // return true;
1922 // }
1923 // If the haystack is smaller than the minimum length required, then
1924 // we know there can be no match.
1925 let minlen = match self.props_union().minimum_len() {
1926 None => return false,
1927 Some(minlen) => minlen,
1928 };
1929 if input.get_span().len() < minlen {
1930 return true;
1931 }
1932 // Same idea as minimum, but for maximum. This is trickier. We can
1933 // only apply the maximum when we know the entire span that we're
1934 // searching *has* to match according to the regex (and possibly the
1935 // input configuration). If we know there is too much for the regex
1936 // to match, we can bail early.
1937 //
1938 // I don't think we can apply the maximum otherwise unfortunately.
1939 if self.is_anchored_start(input) && self.is_always_anchored_end() {
1940 let maxlen = match self.props_union().maximum_len() {
1941 None => return false,
1942 Some(maxlen) => maxlen,
1943 };
1944 if input.get_span().len() > maxlen {
1945 return true;
1946 }
1947 }
1948 false
1949 }
1950}
1951
1952/// An iterator over all non-overlapping matches for an infallible search.
1953///
1954/// The iterator yields a [`Match`] value until no more matches could be found.
1955/// If the underlying regex engine returns an error, then a panic occurs.
1956///
1957/// This iterator can be created with the [`Regex::find_iter`] method.
1958#[derive(Debug)]
1959pub struct FindMatches<'r, C: Cursor> {
1960 re: &'r Regex,
1961 cache: CachePoolGuard<'r>,
1962 it: iter::Searcher<C>,
1963}
1964
1965impl<'r, C: Cursor> FindMatches<'r, C> {
1966 /// Returns the `Regex` value that created this iterator.
1967 #[inline]
1968 pub fn regex(&self) -> &'r Regex {
1969 self.re
1970 }
1971
1972 /// Returns the current `Input` associated with this iterator.
1973 ///
1974 /// The `start` position on the given `Input` may change during iteration,
1975 /// but all other values are guaranteed to remain invariant.
1976 #[inline]
1977 pub fn input(&mut self) -> &mut Input<C> {
1978 self.it.input()
1979 }
1980}
1981
1982impl<'r, C: Cursor> Iterator for FindMatches<'r, C> {
1983 type Item = Match;
1984
1985 #[inline]
1986 fn next(&mut self) -> Option<Match> {
1987 let FindMatches { re, ref mut cache, ref mut it } = *self;
1988 it.advance(|input| Ok(re.search_with(cache, input)))
1989 }
1990
1991 #[inline]
1992 fn count(self) -> usize {
1993 // If all we care about is a count of matches, then we only need to
1994 // find the end position of each match. This can give us a 2x perf
1995 // boost in some cases, because it avoids needing to do a reverse scan
1996 // to find the start of a match.
1997 let FindMatches { re, mut cache, it } = self;
1998 // This does the deref for PoolGuard once instead of every iter.
1999 let cache = &mut *cache;
2000 it.into_half_matches_iter(|input| Ok(re.search_half_with(cache, input))).count()
2001 }
2002}
2003
2004impl<'r, C: Cursor> core::iter::FusedIterator for FindMatches<'r, C> {}
2005
2006/// An iterator over all non-overlapping leftmost matches with their capturing
2007/// groups.
2008///
2009/// The iterator yields a [`Captures`] value until no more matches could be
2010/// found.
2011///
2012/// The lifetime parameters are as follows:
2013///
2014/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2015/// * `'h` represents the lifetime of the haystack being searched.
2016///
2017/// This iterator can be created with the [`Regex::captures_iter`] method.
2018#[derive(Debug)]
2019pub struct CapturesMatches<'r, C: Cursor> {
2020 re: &'r Regex,
2021 cache: CachePoolGuard<'r>,
2022 caps: Captures,
2023 it: iter::Searcher<C>,
2024}
2025
2026impl<'r, C: Cursor> CapturesMatches<'r, C> {
2027 /// Returns the `Regex` value that created this iterator.
2028 #[inline]
2029 pub fn regex(&self) -> &'r Regex {
2030 self.re
2031 }
2032
2033 /// Returns the current `Input` associated with this iterator.
2034 ///
2035 /// The `start` position on the given `Input` may change during iteration,
2036 /// but all other values are guaranteed to remain invariant.
2037 #[inline]
2038 pub fn input(&mut self) -> &mut Input<C> {
2039 self.it.input()
2040 }
2041}
2042
2043impl<'r, C: Cursor> Iterator for CapturesMatches<'r, C> {
2044 type Item = Captures;
2045
2046 #[inline]
2047 fn next(&mut self) -> Option<Captures> {
2048 // Splitting 'self' apart seems necessary to appease borrowck.
2049 let CapturesMatches { re, ref mut cache, ref mut caps, ref mut it } = *self;
2050 let _ = it.advance(|input| {
2051 re.search_captures_with(cache, input, caps);
2052 Ok(caps.get_match())
2053 });
2054 if caps.is_match() {
2055 Some(caps.clone())
2056 } else {
2057 None
2058 }
2059 }
2060
2061 #[inline]
2062 fn count(self) -> usize {
2063 let CapturesMatches { re, mut cache, it, .. } = self;
2064 // This does the deref for PoolGuard once instead of every iter.
2065 let cache = &mut *cache;
2066 it.into_half_matches_iter(|input| Ok(re.search_half_with(cache, input))).count()
2067 }
2068}
2069
2070impl<'r, C: Cursor> core::iter::FusedIterator for CapturesMatches<'r, C> {}
2071
2072/// Yields all substrings delimited by a regular expression match.
2073///
2074/// The spans correspond to the offsets between matches.
2075///
2076/// The lifetime parameters are as follows:
2077///
2078/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2079/// * `'h` represents the lifetime of the haystack being searched.
2080///
2081/// This iterator can be created with the [`Regex::split`] method.
2082#[derive(Debug)]
2083pub struct Split<'r, C: Cursor> {
2084 finder: FindMatches<'r, C>,
2085 last: usize,
2086}
2087
2088impl<'r, C: Cursor> Split<'r, C> {
2089 /// Returns the current `Input` associated with this iterator.
2090 ///
2091 /// The `start` position on the given `Input` may change during iteration,
2092 /// but all other values are guaranteed to remain invariant.
2093 #[inline]
2094 pub fn input(&mut self) -> &mut Input<C> {
2095 self.finder.input()
2096 }
2097}
2098
2099impl<'r, C: Cursor> Iterator for Split<'r, C> {
2100 type Item = Span;
2101
2102 fn next(&mut self) -> Option<Span> {
2103 match self.finder.next() {
2104 None => {
2105 let len = self.finder.it.input().end();
2106 if self.last > len {
2107 None
2108 } else {
2109 let span = Span::from(self.last..len);
2110 self.last = len + 1; // Next call will return None
2111 Some(span)
2112 }
2113 }
2114 Some(m) => {
2115 let span = Span::from(self.last..m.start());
2116 self.last = m.end();
2117 Some(span)
2118 }
2119 }
2120 }
2121}
2122
2123impl<'r, C: Cursor> core::iter::FusedIterator for Split<'r, C> {}
2124
2125/// Yields at most `N` spans delimited by a regular expression match.
2126///
2127/// The spans correspond to the offsets between matches. The last span will be
2128/// whatever remains after splitting.
2129///
2130/// The lifetime parameters are as follows:
2131///
2132/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2133/// * `'h` represents the lifetime of the haystack being searched.
2134///
2135/// This iterator can be created with the [`Regex::splitn`] method.
2136#[derive(Debug)]
2137pub struct SplitN<'r, C: Cursor> {
2138 splits: Split<'r, C>,
2139 limit: usize,
2140}
2141
2142impl<'r, C: Cursor> SplitN<'r, C> {
2143 /// Returns the current `Input` associated with this iterator.
2144 ///
2145 /// The `start` position on the given `Input` may change during iteration,
2146 /// but all other values are guaranteed to remain invariant.
2147 #[inline]
2148 pub fn input(&mut self) -> &mut Input<C> {
2149 self.splits.input()
2150 }
2151}
2152
2153impl<'r, C: Cursor> Iterator for SplitN<'r, C> {
2154 type Item = Span;
2155
2156 fn next(&mut self) -> Option<Span> {
2157 if self.limit == 0 {
2158 return None;
2159 }
2160
2161 self.limit -= 1;
2162 if self.limit > 0 {
2163 return self.splits.next();
2164 }
2165
2166 let len = self.splits.finder.it.input().end();
2167 if self.splits.last > len {
2168 // We've already returned all substrings.
2169 None
2170 } else {
2171 // self.n == 0, so future calls will return None immediately
2172 Some(Span::from(self.splits.last..len))
2173 }
2174 }
2175
2176 fn size_hint(&self) -> (usize, Option<usize>) {
2177 (0, Some(self.limit))
2178 }
2179}
2180
2181impl<'r, C: Cursor> core::iter::FusedIterator for SplitN<'r, C> {}
2182
2183/// Represents mutable scratch space used by regex engines during a search.
2184///
2185/// Most of the regex engines in this crate require some kind of
2186/// mutable state in order to execute a search. This mutable state is
2187/// explicitly separated from the the core regex object (such as a
2188/// [`thompson::NFA`](crate::nfa::thompson::NFA)) so that the read-only regex
2189/// object can be shared across multiple threads simultaneously without any
2190/// synchronization. Conversely, a `Cache` must either be duplicated if using
2191/// the same `Regex` from multiple threads, or else there must be some kind of
2192/// synchronization that guarantees exclusive access while it's in use by one
2193/// thread.
2194///
2195/// A `Regex` attempts to do this synchronization for you by using a thread
2196/// pool internally. Its size scales roughly with the number of simultaneous
2197/// regex searches.
2198///
2199/// For cases where one does not want to rely on a `Regex`'s internal thread
2200/// pool, lower level routines such as [`Regex::search_with`] are provided
2201/// that permit callers to pass a `Cache` into the search routine explicitly.
2202///
2203/// General advice is that the thread pool is often more than good enough.
2204/// However, it may be possible to observe the effects of its latency,
2205/// especially when searching many small haystacks from many threads
2206/// simultaneously.
2207///
2208/// Caches can be created from their corresponding `Regex` via
2209/// [`Regex::create_cache`]. A cache can only be used with either the `Regex`
2210/// that created it, or the `Regex` that was most recently used to reset it
2211/// with [`Cache::reset`]. Using a cache with any other `Regex` may result in
2212/// panics or incorrect results.
2213///
2214/// # Example
2215///
2216/// ```
2217/// use regex_automata::{meta::Regex, Input, Match};
2218///
2219/// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?;
2220/// let mut cache = re.create_cache();
2221/// let input = Input::new("crazy janey and her mission man");
2222/// assert_eq!(
2223/// Some(Match::must(0, 20..31)),
2224/// re.search_with(&mut cache, &input),
2225/// );
2226///
2227/// # Ok::<(), Box<dyn std::error::Error>>(())
2228/// ```
2229#[derive(Debug, Clone)]
2230pub struct Cache {
2231 pub(crate) capmatches: Captures,
2232 pub(crate) pikevm: wrappers::PikeVMCache,
2233 // pub(crate) backtrack: wrappers::BoundedBacktrackerCache,
2234 // pub(crate) onepass: wrappers::OnePassCache,
2235 pub(crate) hybrid: wrappers::HybridCache,
2236 // pub(crate) revhybrid: wrappers::ReverseHybridCache,
2237}
2238
2239impl Cache {
2240 /// Creates a new `Cache` for use with this regex.
2241 ///
2242 /// The cache returned should only be used for searches for the given
2243 /// `Regex`. If you want to reuse the cache for another `Regex`, then you
2244 /// must call [`Cache::reset`] with that `Regex`.
2245 pub fn new(re: &Regex) -> Cache {
2246 re.create_cache()
2247 }
2248
2249 /// Reset this cache such that it can be used for searching with the given
2250 /// `Regex` (and only that `Regex`).
2251 ///
2252 /// A cache reset permits potentially reusing memory already allocated in
2253 /// this cache with a different `Regex`.
2254 ///
2255 /// # Example
2256 ///
2257 /// This shows how to re-purpose a cache for use with a different `Regex`.
2258 ///
2259 /// ```
2260 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2261 /// use regex_automata::{meta::Regex, Match, Input};
2262 ///
2263 /// let re1 = Regex::new(r"\w")?;
2264 /// let re2 = Regex::new(r"\W")?;
2265 ///
2266 /// let mut cache = re1.create_cache();
2267 /// assert_eq!(
2268 /// Some(Match::must(0, 0..2)),
2269 /// re1.search_with(&mut cache, &Input::new("Δ")),
2270 /// );
2271 ///
2272 /// // Using 'cache' with re2 is not allowed. It may result in panics or
2273 /// // incorrect results. In order to re-purpose the cache, we must reset
2274 /// // it with the Regex we'd like to use it with.
2275 /// //
2276 /// // Similarly, after this reset, using the cache with 're1' is also not
2277 /// // allowed.
2278 /// cache.reset(&re2);
2279 /// assert_eq!(
2280 /// Some(Match::must(0, 0..3)),
2281 /// re2.search_with(&mut cache, &Input::new("☃")),
2282 /// );
2283 ///
2284 /// # Ok::<(), Box<dyn std::error::Error>>(())
2285 /// ```
2286 pub fn reset(&mut self, re: &Regex) {
2287 re.imp.strat.reset_cache(self)
2288 }
2289
2290 /// Returns the heap memory usage, in bytes, of this cache.
2291 ///
2292 /// This does **not** include the stack size used up by this cache. To
2293 /// compute that, use `std::mem::size_of::<Cache>()`.
2294 pub fn memory_usage(&self) -> usize {
2295 let mut bytes = 0;
2296 bytes += self.pikevm.memory_usage();
2297 // bytes += self.backtrack.memory_usage();
2298 // bytes += self.onepass.memory_usage();
2299 bytes += self.hybrid.memory_usage();
2300 // bytes += self.revhybrid.memory_usage();
2301 bytes
2302 }
2303}
2304
2305/// An object describing the configuration of a `Regex`.
2306///
2307/// This configuration only includes options for the
2308/// non-syntax behavior of a `Regex`, and can be applied via the
2309/// [`Builder::configure`] method. For configuring the syntax options, see
2310/// [`util::syntax::Config`](crate::util::syntax::Config).
2311///
2312/// # Example: lower the NFA size limit
2313///
2314/// In some cases, the default size limit might be too big. The size limit can
2315/// be lowered, which will prevent large regex patterns from compiling.
2316///
2317/// ```
2318/// # if cfg!(miri) { return Ok(()); } // miri takes too long
2319/// use regex_automata::meta::Regex;
2320///
2321/// let result = Regex::builder()
2322/// .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
2323/// // Not even 20KB is enough to build a single large Unicode class!
2324/// .build(r"\pL");
2325/// assert!(result.is_err());
2326///
2327/// # Ok::<(), Box<dyn std::error::Error>>(())
2328/// ```
2329#[derive(Clone, Debug, Default)]
2330pub struct Config {
2331 // As with other configuration types in this crate, we put all our knobs
2332 // in options so that we can distinguish between "default" and "not set."
2333 // This makes it possible to easily combine multiple configurations
2334 // without default values overwriting explicitly specified values. See the
2335 // 'overwrite' method.
2336 //
2337 // For docs on the fields below, see the corresponding method setters.
2338 match_kind: Option<MatchKind>,
2339 utf8_empty: Option<bool>,
2340 autopre: Option<bool>,
2341 pre: Option<Option<Prefilter>>,
2342 which_captures: Option<WhichCaptures>,
2343 nfa_size_limit: Option<Option<usize>>,
2344 onepass_size_limit: Option<Option<usize>>,
2345 hybrid_cache_capacity: Option<usize>,
2346 hybrid: Option<bool>,
2347 dfa: Option<bool>,
2348 dfa_size_limit: Option<Option<usize>>,
2349 dfa_state_limit: Option<Option<usize>>,
2350 // onepass: Option<bool>,
2351 backtrack: Option<bool>,
2352 byte_classes: Option<bool>,
2353 line_terminator: Option<u8>,
2354}
2355
2356impl Config {
2357 /// Create a new configuration object for a `Regex`.
2358 pub fn new() -> Config {
2359 Config::default()
2360 }
2361
2362 /// Set the match semantics for a `Regex`.
2363 ///
2364 /// The default value is [`MatchKind::LeftmostFirst`].
2365 ///
2366 /// # Example
2367 ///
2368 /// ```
2369 /// use regex_automata::{meta::Regex, Match, MatchKind};
2370 ///
2371 /// // By default, leftmost-first semantics are used, which
2372 /// // disambiguates matches at the same position by selecting
2373 /// // the one that corresponds earlier in the pattern.
2374 /// let re = Regex::new("sam|samwise")?;
2375 /// assert_eq!(Some(Match::must(0, 0..3)), re.find("samwise"));
2376 ///
2377 /// // But with 'all' semantics, match priority is ignored
2378 /// // and all match states are included. When coupled with
2379 /// // a leftmost search, the search will report the last
2380 /// // possible match.
2381 /// let re = Regex::builder()
2382 /// .configure(Regex::config().match_kind(MatchKind::All))
2383 /// .build("sam|samwise")?;
2384 /// assert_eq!(Some(Match::must(0, 0..7)), re.find("samwise"));
2385 /// // Beware that this can lead to skipping matches!
2386 /// // Usually 'all' is used for anchored reverse searches
2387 /// // only, or for overlapping searches.
2388 /// assert_eq!(Some(Match::must(0, 4..11)), re.find("sam samwise"));
2389 ///
2390 /// # Ok::<(), Box<dyn std::error::Error>>(())
2391 /// ```
2392 pub fn match_kind(self, kind: MatchKind) -> Config {
2393 Config { match_kind: Some(kind), ..self }
2394 }
2395
2396 /// Toggles whether empty matches are permitted to occur between the code
2397 /// units of a UTF-8 encoded codepoint.
2398 ///
2399 /// This should generally be enabled when search a `&str` or anything that
2400 /// you otherwise know is valid UTF-8. It should be disabled in all other
2401 /// cases. Namely, if the haystack is not valid UTF-8 and this is enabled,
2402 /// then behavior is unspecified.
2403 ///
2404 /// By default, this is enabled.
2405 ///
2406 /// # Example
2407 ///
2408 /// ```
2409 /// use regex_automata::{meta::Regex, Match};
2410 ///
2411 /// let re = Regex::new("")?;
2412 /// let got: Vec<Match> = re.find_iter("☃").collect();
2413 /// // Matches only occur at the beginning and end of the snowman.
2414 /// assert_eq!(got, vec![
2415 /// Match::must(0, 0..0),
2416 /// Match::must(0, 3..3),
2417 /// ]);
2418 ///
2419 /// let re = Regex::builder()
2420 /// .configure(Regex::config().utf8_empty(false))
2421 /// .build("")?;
2422 /// let got: Vec<Match> = re.find_iter("☃").collect();
2423 /// // Matches now occur at every position!
2424 /// assert_eq!(got, vec![
2425 /// Match::must(0, 0..0),
2426 /// Match::must(0, 1..1),
2427 /// Match::must(0, 2..2),
2428 /// Match::must(0, 3..3),
2429 /// ]);
2430 ///
2431 /// Ok::<(), Box<dyn std::error::Error>>(())
2432 /// ```
2433 pub fn utf8_empty(self, yes: bool) -> Config {
2434 Config { utf8_empty: Some(yes), ..self }
2435 }
2436
2437 /// Toggles whether automatic prefilter support is enabled.
2438 ///
2439 /// If this is disabled and [`Config::prefilter`] is not set, then the
2440 /// meta regex engine will not use any prefilters. This can sometimes
2441 /// be beneficial in cases where you know (or have measured) that the
2442 /// prefilter leads to overall worse search performance.
2443 ///
2444 /// By default, this is enabled.
2445 ///
2446 /// # Example
2447 ///
2448 /// ```
2449 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2450 /// use regex_automata::{meta::Regex, Match};
2451 ///
2452 /// let re = Regex::builder()
2453 /// .configure(Regex::config().auto_prefilter(false))
2454 /// .build(r"Bruce \w+")?;
2455 /// let hay = "Hello Bruce Springsteen!";
2456 /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay));
2457 ///
2458 /// Ok::<(), Box<dyn std::error::Error>>(())
2459 /// ```
2460 pub fn auto_prefilter(self, yes: bool) -> Config {
2461 Config { autopre: Some(yes), ..self }
2462 }
2463
2464 /// Overrides and sets the prefilter to use inside a `Regex`.
2465 ///
2466 /// This permits one to forcefully set a prefilter in cases where the
2467 /// caller knows better than whatever the automatic prefilter logic is
2468 /// capable of.
2469 ///
2470 /// By default, this is set to `None` and an automatic prefilter will be
2471 /// used if one could be built. (Assuming [`Config::auto_prefilter`] is
2472 /// enabled, which it is by default.)
2473 ///
2474 /// # Example
2475 ///
2476 /// This example shows how to set your own prefilter. In the case of a
2477 /// pattern like `Bruce \w+`, the automatic prefilter is likely to be
2478 /// constructed in a way that it will look for occurrences of `Bruce `.
2479 /// In most cases, this is the best choice. But in some cases, it may be
2480 /// the case that running `memchr` on `B` is the best choice. One can
2481 /// achieve that behavior by overriding the automatic prefilter logic
2482 /// and providing a prefilter that just matches `B`.
2483 ///
2484 /// ```
2485 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2486 /// use regex_automata::{
2487 /// meta::Regex,
2488 /// util::prefilter::Prefilter,
2489 /// Match, MatchKind,
2490 /// };
2491 ///
2492 /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["B"])
2493 /// .expect("a prefilter");
2494 /// let re = Regex::builder()
2495 /// .configure(Regex::config().prefilter(Some(pre)))
2496 /// .build(r"Bruce \w+")?;
2497 /// let hay = "Hello Bruce Springsteen!";
2498 /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay));
2499 ///
2500 /// # Ok::<(), Box<dyn std::error::Error>>(())
2501 /// ```
2502 ///
2503 /// # Example: incorrect prefilters can lead to incorrect results!
2504 ///
2505 /// Be warned that setting an incorrect prefilter can lead to missed
2506 /// matches. So if you use this option, ensure your prefilter can _never_
2507 /// report false negatives. (A false positive is, on the other hand, quite
2508 /// okay and generally unavoidable.)
2509 ///
2510 /// ```
2511 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2512 /// use regex_automata::{
2513 /// meta::Regex,
2514 /// util::prefilter::Prefilter,
2515 /// Match, MatchKind,
2516 /// };
2517 ///
2518 /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["Z"])
2519 /// .expect("a prefilter");
2520 /// let re = Regex::builder()
2521 /// .configure(Regex::config().prefilter(Some(pre)))
2522 /// .build(r"Bruce \w+")?;
2523 /// let hay = "Hello Bruce Springsteen!";
2524 /// // Oops! No match found, but there should be one!
2525 /// assert_eq!(None, re.find(hay));
2526 ///
2527 /// # Ok::<(), Box<dyn std::error::Error>>(())
2528 /// ```
2529 pub fn prefilter(self, pre: Option<Prefilter>) -> Config {
2530 Config { pre: Some(pre), ..self }
2531 }
2532
2533 /// Configures what kinds of groups are compiled as "capturing" in the
2534 /// underlying regex engine.
2535 ///
2536 /// This is set to [`WhichCaptures::All`] by default. Callers may wish to
2537 /// use [`WhichCaptures::Implicit`] in cases where one wants avoid the
2538 /// overhead of capture states for explicit groups.
2539 ///
2540 /// Note that another approach to avoiding the overhead of capture groups
2541 /// is by using non-capturing groups in the regex pattern. That is,
2542 /// `(?:a)` instead of `(a)`. This option is useful when you can't control
2543 /// the concrete syntax but know that you don't need the underlying capture
2544 /// states. For example, using `WhichCaptures::Implicit` will behave as if
2545 /// all explicit capturing groups in the pattern were non-capturing.
2546 ///
2547 /// Setting this to `WhichCaptures::None` is usually not the right thing to
2548 /// do. When no capture states are compiled, some regex engines (such as
2549 /// the `PikeVM`) won't be able to report match offsets. This will manifest
2550 /// as no match being found.
2551 ///
2552 /// # Example
2553 ///
2554 /// This example demonstrates how the results of capture groups can change
2555 /// based on this option. First we show the default (all capture groups in
2556 /// the pattern are capturing):
2557 ///
2558 /// ```
2559 /// use regex_automata::{meta::Regex, Match, Span};
2560 ///
2561 /// let re = Regex::new(r"foo([0-9]+)bar")?;
2562 /// let hay = "foo123bar";
2563 ///
2564 /// let mut caps = re.create_captures();
2565 /// re.captures(hay, &mut caps);
2566 /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0));
2567 /// assert_eq!(Some(Span::from(3..6)), caps.get_group(1));
2568 ///
2569 /// Ok::<(), Box<dyn std::error::Error>>(())
2570 /// ```
2571 ///
2572 /// And now we show the behavior when we only include implicit capture
2573 /// groups. In this case, we can only find the overall match span, but the
2574 /// spans of any other explicit group don't exist because they are treated
2575 /// as non-capturing. (In effect, when `WhichCaptures::Implicit` is used,
2576 /// there is no real point in using [`Regex::captures`] since it will never
2577 /// be able to report more information than [`Regex::find`].)
2578 ///
2579 /// ```
2580 /// use regex_automata::{
2581 /// meta::Regex,
2582 /// nfa::thompson::WhichCaptures,
2583 /// Match,
2584 /// Span,
2585 /// };
2586 ///
2587 /// let re = Regex::builder()
2588 /// .configure(Regex::config().which_captures(WhichCaptures::Implicit))
2589 /// .build(r"foo([0-9]+)bar")?;
2590 /// let hay = "foo123bar";
2591 ///
2592 /// let mut caps = re.create_captures();
2593 /// re.captures(hay, &mut caps);
2594 /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0));
2595 /// assert_eq!(None, caps.get_group(1));
2596 ///
2597 /// Ok::<(), Box<dyn std::error::Error>>(())
2598 /// ```
2599 pub fn which_captures(mut self, which_captures: WhichCaptures) -> Config {
2600 self.which_captures = Some(which_captures);
2601 self
2602 }
2603
2604 /// Sets the size limit, in bytes, to enforce on the construction of every
2605 /// NFA build by the meta regex engine.
2606 ///
2607 /// Setting it to `None` disables the limit. This is not recommended if
2608 /// you're compiling untrusted patterns.
2609 ///
2610 /// Note that this limit is applied to _each_ NFA built, and if any of
2611 /// them exceed the limit, then construction will fail. This limit does
2612 /// _not_ correspond to the total memory used by all NFAs in the meta regex
2613 /// engine.
2614 ///
2615 /// This defaults to some reasonable number that permits most reasonable
2616 /// patterns.
2617 ///
2618 /// # Example
2619 ///
2620 /// ```
2621 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2622 /// use regex_automata::meta::Regex;
2623 ///
2624 /// let result = Regex::builder()
2625 /// .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
2626 /// // Not even 20KB is enough to build a single large Unicode class!
2627 /// .build(r"\pL");
2628 /// assert!(result.is_err());
2629 ///
2630 /// // But notice that building such a regex with the exact same limit
2631 /// // can succeed depending on other aspects of the configuration. For
2632 /// // example, a single *forward* NFA will (at time of writing) fit into
2633 /// // the 20KB limit, but a *reverse* NFA of the same pattern will not.
2634 /// // So if one configures a meta regex such that a reverse NFA is never
2635 /// // needed and thus never built, then the 20KB limit will be enough for
2636 /// // a pattern like \pL!
2637 /// let result = Regex::builder()
2638 /// .configure(Regex::config()
2639 /// .nfa_size_limit(Some(20 * (1<<10)))
2640 /// // The DFAs are the only thing that (currently) need a reverse
2641 /// // NFA. So if both are disabled, the meta regex engine will
2642 /// // skip building the reverse NFA. Note that this isn't an API
2643 /// // guarantee. A future semver compatible version may introduce
2644 /// // new use cases for a reverse NFA.
2645 /// .hybrid(false)
2646 /// .dfa(false)
2647 /// )
2648 /// // Not even 20KB is enough to build a single large Unicode class!
2649 /// .build(r"\pL");
2650 /// assert!(result.is_ok());
2651 ///
2652 /// # Ok::<(), Box<dyn std::error::Error>>(())
2653 /// ```
2654 pub fn nfa_size_limit(self, limit: Option<usize>) -> Config {
2655 Config { nfa_size_limit: Some(limit), ..self }
2656 }
2657
2658 /// Sets the size limit, in bytes, for the one-pass DFA.
2659 ///
2660 /// Setting it to `None` disables the limit. Disabling the limit is
2661 /// strongly discouraged when compiling untrusted patterns. Even if the
2662 /// patterns are trusted, it still may not be a good idea, since a one-pass
2663 /// DFA can use a lot of memory. With that said, as the size of a regex
2664 /// increases, the likelihood of it being one-pass likely decreases.
2665 ///
2666 /// This defaults to some reasonable number that permits most reasonable
2667 /// one-pass patterns.
2668 ///
2669 /// # Example
2670 ///
2671 /// This shows how to set the one-pass DFA size limit. Note that since
2672 /// a one-pass DFA is an optional component of the meta regex engine,
2673 /// this size limit only impacts what is built internally and will never
2674 /// determine whether a `Regex` itself fails to build.
2675 ///
2676 /// ```
2677 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2678 /// use regex_automata::meta::Regex;
2679 ///
2680 /// let result = Regex::builder()
2681 /// .configure(Regex::config().onepass_size_limit(Some(2 * (1<<20))))
2682 /// .build(r"\pL{5}");
2683 /// assert!(result.is_ok());
2684 /// # Ok::<(), Box<dyn std::error::Error>>(())
2685 /// ```
2686 pub fn onepass_size_limit(self, limit: Option<usize>) -> Config {
2687 Config { onepass_size_limit: Some(limit), ..self }
2688 }
2689
2690 /// Set the cache capacity, in bytes, for the lazy DFA.
2691 ///
2692 /// The cache capacity of the lazy DFA determines approximately how much
2693 /// heap memory it is allowed to use to store its state transitions. The
2694 /// state transitions are computed at search time, and if the cache fills
2695 /// up it, it is cleared. At this point, any previously generated state
2696 /// transitions are lost and are re-generated if they're needed again.
2697 ///
2698 /// This sort of cache filling and clearing works quite well _so long as
2699 /// cache clearing happens infrequently_. If it happens too often, then the
2700 /// meta regex engine will stop using the lazy DFA and switch over to a
2701 /// different regex engine.
2702 ///
2703 /// In cases where the cache is cleared too often, it may be possible to
2704 /// give the cache more space and reduce (or eliminate) how often it is
2705 /// cleared. Similarly, sometimes a regex is so big that the lazy DFA isn't
2706 /// used at all if its cache capacity isn't big enough.
2707 ///
2708 /// The capacity set here is a _limit_ on how much memory is used. The
2709 /// actual memory used is only allocated as it's needed.
2710 ///
2711 /// Determining the right value for this is a little tricky and will likely
2712 /// required some profiling. Enabling the `logging` feature and setting the
2713 /// log level to `trace` will also tell you how often the cache is being
2714 /// cleared.
2715 ///
2716 /// # Example
2717 ///
2718 /// ```
2719 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2720 /// use regex_automata::meta::Regex;
2721 ///
2722 /// let result = Regex::builder()
2723 /// .configure(Regex::config().hybrid_cache_capacity(20 * (1<<20)))
2724 /// .build(r"\pL{5}");
2725 /// assert!(result.is_ok());
2726 /// # Ok::<(), Box<dyn std::error::Error>>(())
2727 /// ```
2728 pub fn hybrid_cache_capacity(self, limit: usize) -> Config {
2729 Config { hybrid_cache_capacity: Some(limit), ..self }
2730 }
2731
2732 /// Sets the size limit, in bytes, for heap memory used for a fully
2733 /// compiled DFA.
2734 ///
2735 /// **NOTE:** If you increase this, you'll likely also need to increase
2736 /// [`Config::dfa_state_limit`].
2737 ///
2738 /// In contrast to the lazy DFA, building a full DFA requires computing
2739 /// all of its state transitions up front. This can be a very expensive
2740 /// process, and runs in worst case `2^n` time and space (where `n` is
2741 /// proportional to the size of the regex). However, a full DFA unlocks
2742 /// some additional optimization opportunities.
2743 ///
2744 /// Because full DFAs can be so expensive, the default limits for them are
2745 /// incredibly small. Generally speaking, if your regex is moderately big
2746 /// or if you're using Unicode features (`\w` is Unicode-aware by default
2747 /// for example), then you can expect that the meta regex engine won't even
2748 /// attempt to build a DFA for it.
2749 ///
2750 /// If this and [`Config::dfa_state_limit`] are set to `None`, then the
2751 /// meta regex will not use any sort of limits when deciding whether to
2752 /// build a DFA. This in turn makes construction of a `Regex` take
2753 /// worst case exponential time and space. Even short patterns can result
2754 /// in huge space blow ups. So it is strongly recommended to keep some kind
2755 /// of limit set!
2756 ///
2757 /// The default is set to a small number that permits some simple regexes
2758 /// to get compiled into DFAs in reasonable time.
2759 ///
2760 /// # Example
2761 ///
2762 /// ```
2763 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2764 /// use regex_automata::meta::Regex;
2765 ///
2766 /// let result = Regex::builder()
2767 /// // 100MB is much bigger than the default.
2768 /// .configure(Regex::config()
2769 /// .dfa_size_limit(Some(100 * (1<<20)))
2770 /// // We don't care about size too much here, so just
2771 /// // remove the NFA state limit altogether.
2772 /// .dfa_state_limit(None))
2773 /// .build(r"\pL{5}");
2774 /// assert!(result.is_ok());
2775 /// # Ok::<(), Box<dyn std::error::Error>>(())
2776 /// ```
2777 pub fn dfa_size_limit(self, limit: Option<usize>) -> Config {
2778 Config { dfa_size_limit: Some(limit), ..self }
2779 }
2780
2781 /// Sets a limit on the total number of NFA states, beyond which, a full
2782 /// DFA is not attempted to be compiled.
2783 ///
2784 /// This limit works in concert with [`Config::dfa_size_limit`]. Namely,
2785 /// where as `Config::dfa_size_limit` is applied by attempting to construct
2786 /// a DFA, this limit is used to avoid the attempt in the first place. This
2787 /// is useful to avoid hefty initialization costs associated with building
2788 /// a DFA for cases where it is obvious the DFA will ultimately be too big.
2789 ///
2790 /// By default, this is set to a very small number.
2791 ///
2792 /// # Example
2793 ///
2794 /// ```
2795 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2796 /// use regex_automata::meta::Regex;
2797 ///
2798 /// let result = Regex::builder()
2799 /// .configure(Regex::config()
2800 /// // Sometimes the default state limit rejects DFAs even
2801 /// // if they would fit in the size limit. Here, we disable
2802 /// // the check on the number of NFA states and just rely on
2803 /// // the size limit.
2804 /// .dfa_state_limit(None))
2805 /// .build(r"(?-u)\w{30}");
2806 /// assert!(result.is_ok());
2807 /// # Ok::<(), Box<dyn std::error::Error>>(())
2808 /// ```
2809 pub fn dfa_state_limit(self, limit: Option<usize>) -> Config {
2810 Config { dfa_state_limit: Some(limit), ..self }
2811 }
2812
2813 /// Whether to attempt to shrink the size of the alphabet for the regex
2814 /// pattern or not. When enabled, the alphabet is shrunk into a set of
2815 /// equivalence classes, where every byte in the same equivalence class
2816 /// cannot discriminate between a match or non-match.
2817 ///
2818 /// **WARNING:** This is only useful for debugging DFAs. Disabling this
2819 /// does not yield any speed advantages. Indeed, disabling it can result
2820 /// in much higher memory usage. Disabling byte classes is useful for
2821 /// debugging the actual generated transitions because it lets one see the
2822 /// transitions defined on actual bytes instead of the equivalence classes.
2823 ///
2824 /// This option is enabled by default and should never be disabled unless
2825 /// one is debugging the meta regex engine's internals.
2826 ///
2827 /// # Example
2828 ///
2829 /// ```
2830 /// use regex_automata::{meta::Regex, Match};
2831 ///
2832 /// let re = Regex::builder()
2833 /// .configure(Regex::config().byte_classes(false))
2834 /// .build(r"[a-z]+")?;
2835 /// let hay = "!!quux!!";
2836 /// assert_eq!(Some(Match::must(0, 2..6)), re.find(hay));
2837 ///
2838 /// # Ok::<(), Box<dyn std::error::Error>>(())
2839 /// ```
2840 pub fn byte_classes(self, yes: bool) -> Config {
2841 Config { byte_classes: Some(yes), ..self }
2842 }
2843
2844 /// Set the line terminator to be used by the `^` and `$` anchors in
2845 /// multi-line mode.
2846 ///
2847 /// This option has no effect when CRLF mode is enabled. That is,
2848 /// regardless of this setting, `(?Rm:^)` and `(?Rm:$)` will always treat
2849 /// `\r` and `\n` as line terminators (and will never match between a `\r`
2850 /// and a `\n`).
2851 ///
2852 /// By default, `\n` is the line terminator.
2853 ///
2854 /// **Warning**: This does not change the behavior of `.`. To do that,
2855 /// you'll need to configure the syntax option
2856 /// [`syntax::Config::line_terminator`](crate::util::syntax::Config::line_terminator)
2857 /// in addition to this. Otherwise, `.` will continue to match any
2858 /// character other than `\n`.
2859 ///
2860 /// # Example
2861 ///
2862 /// ```
2863 /// use regex_automata::{meta::Regex, util::syntax, Match};
2864 ///
2865 /// let re = Regex::builder()
2866 /// .syntax(syntax::Config::new().multi_line(true))
2867 /// .configure(Regex::config().line_terminator(b'\x00'))
2868 /// .build(r"^foo$")?;
2869 /// let hay = "\x00foo\x00";
2870 /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
2871 ///
2872 /// # Ok::<(), Box<dyn std::error::Error>>(())
2873 /// ```
2874 pub fn line_terminator(self, byte: u8) -> Config {
2875 Config { line_terminator: Some(byte), ..self }
2876 }
2877
2878 /// Toggle whether the hybrid NFA/DFA (also known as the "lazy DFA") should
2879 /// be available for use by the meta regex engine.
2880 ///
2881 /// Enabling this does not necessarily mean that the lazy DFA will
2882 /// definitely be used. It just means that it will be _available_ for use
2883 /// if the meta regex engine thinks it will be useful.
2884 ///
2885 /// When the `hybrid` crate feature is enabled, then this is enabled by
2886 /// default. Otherwise, if the crate feature is disabled, then this is
2887 /// always disabled, regardless of its setting by the caller.
2888 pub fn hybrid(self, yes: bool) -> Config {
2889 Config { hybrid: Some(yes), ..self }
2890 }
2891
2892 /// Toggle whether a fully compiled DFA should be available for use by the
2893 /// meta regex engine.
2894 ///
2895 /// Enabling this does not necessarily mean that a DFA will definitely be
2896 /// used. It just means that it will be _available_ for use if the meta
2897 /// regex engine thinks it will be useful.
2898 ///
2899 /// When the `dfa-build` crate feature is enabled, then this is enabled by
2900 /// default. Otherwise, if the crate feature is disabled, then this is
2901 /// always disabled, regardless of its setting by the caller.
2902 pub fn dfa(self, yes: bool) -> Config {
2903 Config { dfa: Some(yes), ..self }
2904 }
2905
2906 // /// Toggle whether a one-pass DFA should be available for use by the meta
2907 // /// regex engine.
2908 // ///
2909 // /// Enabling this does not necessarily mean that a one-pass DFA will
2910 // /// definitely be used. It just means that it will be _available_ for
2911 // /// use if the meta regex engine thinks it will be useful. (Indeed, a
2912 // /// one-pass DFA can only be used when the regex is one-pass. See the
2913 // /// [`dfa::onepass`](crate::dfa::onepass) module for more details.)
2914 // ///
2915 // /// When the `dfa-onepass` crate feature is enabled, then this is enabled
2916 // /// by default. Otherwise, if the crate feature is disabled, then this is
2917 // /// always disabled, regardless of its setting by the caller.
2918 // pub fn onepass(self, yes: bool) -> Config {
2919 // Config { onepass: Some(yes), ..self }
2920 // }
2921
2922 /// Toggle whether a bounded backtracking regex engine should be available
2923 /// for use by the meta regex engine.
2924 ///
2925 /// Enabling this does not necessarily mean that a bounded backtracker will
2926 /// definitely be used. It just means that it will be _available_ for use
2927 /// if the meta regex engine thinks it will be useful.
2928 ///
2929 /// When the `nfa-backtrack` crate feature is enabled, then this is enabled
2930 /// by default. Otherwise, if the crate feature is disabled, then this is
2931 /// always disabled, regardless of its setting by the caller.
2932 pub fn backtrack(self, yes: bool) -> Config {
2933 Config { backtrack: Some(yes), ..self }
2934 }
2935
2936 /// Returns the match kind on this configuration, as set by
2937 /// [`Config::match_kind`].
2938 ///
2939 /// If it was not explicitly set, then a default value is returned.
2940 pub fn get_match_kind(&self) -> MatchKind {
2941 self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
2942 }
2943
2944 /// Returns whether empty matches must fall on valid UTF-8 boundaries, as
2945 /// set by [`Config::utf8_empty`].
2946 ///
2947 /// If it was not explicitly set, then a default value is returned.
2948 pub fn get_utf8_empty(&self) -> bool {
2949 self.utf8_empty.unwrap_or(true)
2950 }
2951
2952 /// Returns whether automatic prefilters are enabled, as set by
2953 /// [`Config::auto_prefilter`].
2954 ///
2955 /// If it was not explicitly set, then a default value is returned.
2956 pub fn get_auto_prefilter(&self) -> bool {
2957 self.autopre.unwrap_or(true)
2958 }
2959
2960 /// Returns a manually set prefilter, if one was set by
2961 /// [`Config::prefilter`].
2962 ///
2963 /// If it was not explicitly set, then a default value is returned.
2964 pub fn get_prefilter(&self) -> Option<&Prefilter> {
2965 self.pre.as_ref().unwrap_or(&None).as_ref()
2966 }
2967
2968 /// Returns the capture configuration, as set by
2969 /// [`Config::which_captures`].
2970 ///
2971 /// If it was not explicitly set, then a default value is returned.
2972 pub fn get_which_captures(&self) -> WhichCaptures {
2973 self.which_captures.unwrap_or(WhichCaptures::All)
2974 }
2975
2976 /// Returns NFA size limit, as set by [`Config::nfa_size_limit`].
2977 ///
2978 /// If it was not explicitly set, then a default value is returned.
2979 pub fn get_nfa_size_limit(&self) -> Option<usize> {
2980 self.nfa_size_limit.unwrap_or(Some(10 * (1 << 20)))
2981 }
2982
2983 // /// Returns one-pass DFA size limit, as set by
2984 // /// [`Config::onepass_size_limit`].
2985 // ///
2986 // /// If it was not explicitly set, then a default value is returned.
2987 // pub fn get_onepass_size_limit(&self) -> Option<usize> {
2988 // self.onepass_size_limit.unwrap_or(Some((1 << 20)))
2989 // }
2990
2991 /// Returns hybrid NFA/DFA cache capacity, as set by
2992 /// [`Config::hybrid_cache_capacity`].
2993 ///
2994 /// If it was not explicitly set, then a default value is returned.
2995 pub fn get_hybrid_cache_capacity(&self) -> usize {
2996 self.hybrid_cache_capacity.unwrap_or(2 * (1 << 20))
2997 }
2998
2999 /// Returns DFA size limit, as set by [`Config::dfa_size_limit`].
3000 ///
3001 /// If it was not explicitly set, then a default value is returned.
3002 pub fn get_dfa_size_limit(&self) -> Option<usize> {
3003 // The default for this is VERY small because building a full DFA is
3004 // ridiculously costly. But for regexes that are very small, it can be
3005 // beneficial to use a full DFA. In particular, a full DFA can enable
3006 // additional optimizations via something called "accelerated" states.
3007 // Namely, when there's a state with only a few outgoing transitions,
3008 // we can temporary suspend walking the transition table and use memchr
3009 // for just those outgoing transitions to skip ahead very quickly.
3010 //
3011 // Generally speaking, if Unicode is enabled in your regex and you're
3012 // using some kind of Unicode feature, then it's going to blow this
3013 // size limit. Moreover, Unicode tends to defeat the "accelerated"
3014 // state optimization too, so it's a double whammy.
3015 //
3016 // We also use a limit on the number of NFA states to avoid even
3017 // starting the DFA construction process. Namely, DFA construction
3018 // itself could make lots of initial allocs proportional to the size
3019 // of the NFA, and if the NFA is large, it doesn't make sense to pay
3020 // that cost if we know it's likely to be blown by a large margin.
3021 self.dfa_size_limit.unwrap_or(Some(40 * (1 << 10)))
3022 }
3023
3024 /// Returns DFA size limit in terms of the number of states in the NFA, as
3025 /// set by [`Config::dfa_state_limit`].
3026 ///
3027 /// If it was not explicitly set, then a default value is returned.
3028 pub fn get_dfa_state_limit(&self) -> Option<usize> {
3029 // Again, as with the size limit, we keep this very small.
3030 self.dfa_state_limit.unwrap_or(Some(30))
3031 }
3032
3033 /// Returns whether byte classes are enabled, as set by
3034 /// [`Config::byte_classes`].
3035 ///
3036 /// If it was not explicitly set, then a default value is returned.
3037 pub fn get_byte_classes(&self) -> bool {
3038 self.byte_classes.unwrap_or(true)
3039 }
3040
3041 /// Returns the line terminator for this configuration, as set by
3042 /// [`Config::line_terminator`].
3043 ///
3044 /// If it was not explicitly set, then a default value is returned.
3045 pub fn get_line_terminator(&self) -> u8 {
3046 self.line_terminator.unwrap_or(b'\n')
3047 }
3048
3049 /// Returns whether the hybrid NFA/DFA regex engine may be used, as set by
3050 /// [`Config::hybrid`].
3051 ///
3052 /// If it was not explicitly set, then a default value is returned.
3053 pub fn get_hybrid(&self) -> bool {
3054 self.hybrid.unwrap_or(true)
3055 }
3056
3057 /// Returns whether the DFA regex engine may be used, as set by
3058 /// [`Config::dfa`].
3059 ///
3060 /// If it was not explicitly set, then a default value is returned.
3061 pub fn get_dfa(&self) -> bool {
3062 self.dfa.unwrap_or(true)
3063 }
3064
3065 // /// Returns whether the one-pass DFA regex engine may be used, as set by
3066 // /// [`Config::onepass`].
3067 // ///
3068 // /// If it was not explicitly set, then a default value is returned.
3069 // pub fn get_onepass(&self) -> bool {
3070 // self.onepass.unwrap_or(true)
3071 // }
3072
3073 // /// Returns whether the bounded backtracking regex engine may be used, as
3074 // /// set by [`Config::backtrack`].
3075 // ///
3076 // /// If it was not explicitly set, then a default value is returned.
3077 // pub fn get_backtrack(&self) -> bool {
3078 // #[cfg(feature = "nfa-backtrack")]
3079 // {
3080 // self.backtrack.unwrap_or(true)
3081 // }
3082 // #[cfg(not(feature = "nfa-backtrack"))]
3083 // {
3084 // false
3085 // }
3086 // }
3087
3088 /// Overwrite the default configuration such that the options in `o` are
3089 /// always used. If an option in `o` is not set, then the corresponding
3090 /// option in `self` is used. If it's not set in `self` either, then it
3091 /// remains not set.
3092 pub(crate) fn overwrite(&self, o: Config) -> Config {
3093 Config {
3094 match_kind: o.match_kind.or(self.match_kind),
3095 utf8_empty: o.utf8_empty.or(self.utf8_empty),
3096 autopre: o.autopre.or(self.autopre),
3097 pre: o.pre.or_else(|| self.pre.clone()),
3098 which_captures: o.which_captures.or(self.which_captures),
3099 nfa_size_limit: o.nfa_size_limit.or(self.nfa_size_limit),
3100 onepass_size_limit: o.onepass_size_limit.or(self.onepass_size_limit),
3101 hybrid_cache_capacity: o.hybrid_cache_capacity.or(self.hybrid_cache_capacity),
3102 hybrid: o.hybrid.or(self.hybrid),
3103 dfa: o.dfa.or(self.dfa),
3104 dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit),
3105 dfa_state_limit: o.dfa_state_limit.or(self.dfa_state_limit),
3106 // onepass: o.onepass.or(self.onepass),
3107 backtrack: o.backtrack.or(self.backtrack),
3108 byte_classes: o.byte_classes.or(self.byte_classes),
3109 line_terminator: o.line_terminator.or(self.line_terminator),
3110 }
3111 }
3112}
3113
3114/// A builder for configuring and constructing a `Regex`.
3115///
3116/// The builder permits configuring two different aspects of a `Regex`:
3117///
3118/// * [`Builder::configure`] will set high-level configuration options as
3119/// described by a [`Config`].
3120/// * [`Builder::syntax`] will set the syntax level configuration options
3121/// as described by a [`util::syntax::Config`](crate::util::syntax::Config).
3122/// This only applies when building a `Regex` from pattern strings.
3123///
3124/// Once configured, the builder can then be used to construct a `Regex` from
3125/// one of 4 different inputs:
3126///
3127/// * [`Builder::build`] creates a regex from a single pattern string.
3128/// * [`Builder::build_many`] creates a regex from many pattern strings.
3129/// * [`Builder::build_from_hir`] creates a regex from a
3130/// [`regex-syntax::Hir`](Hir) expression.
3131/// * [`Builder::build_many_from_hir`] creates a regex from many
3132/// [`regex-syntax::Hir`](Hir) expressions.
3133///
3134/// The latter two methods in particular provide a way to construct a fully
3135/// feature regular expression matcher directly from an `Hir` expression
3136/// without having to first convert it to a string. (This is in contrast to the
3137/// top-level `regex` crate which intentionally provides no such API in order
3138/// to avoid making `regex-syntax` a public dependency.)
3139///
3140/// As a convenience, this builder may be created via [`Regex::builder`], which
3141/// may help avoid an extra import.
3142///
3143/// # Example: change the line terminator
3144///
3145/// This example shows how to enable multi-line mode by default and change the
3146/// line terminator to the NUL byte:
3147///
3148/// ```
3149/// use regex_automata::{meta::Regex, util::syntax, Match};
3150///
3151/// let re = Regex::builder()
3152/// .syntax(syntax::Config::new().multi_line(true))
3153/// .configure(Regex::config().line_terminator(b'\x00'))
3154/// .build(r"^foo$")?;
3155/// let hay = "\x00foo\x00";
3156/// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
3157///
3158/// # Ok::<(), Box<dyn std::error::Error>>(())
3159/// ```
3160///
3161/// # Example: disable UTF-8 requirement
3162///
3163/// By default, regex patterns are required to match UTF-8. This includes
3164/// regex patterns that can produce matches of length zero. In the case of an
3165/// empty match, by default, matches will not appear between the code units of
3166/// a UTF-8 encoded codepoint.
3167///
3168/// However, it can be useful to disable this requirement, particularly if
3169/// you're searching things like `&[u8]` that are not known to be valid UTF-8.
3170///
3171/// ```
3172/// use regex_automata::{meta::Regex, util::syntax, Match};
3173///
3174/// let mut builder = Regex::builder();
3175/// // Disables the requirement that non-empty matches match UTF-8.
3176/// builder.syntax(syntax::Config::new().utf8(false));
3177/// // Disables the requirement that empty matches match UTF-8 boundaries.
3178/// builder.configure(Regex::config().utf8_empty(false));
3179///
3180/// // We can match raw bytes via \xZZ syntax, but we need to disable
3181/// // Unicode mode to do that. We could disable it everywhere, or just
3182/// // selectively, as shown here.
3183/// let re = builder.build(r"(?-u:\xFF)foo(?-u:\xFF)")?;
3184/// let hay = b"\xFFfoo\xFF";
3185/// assert_eq!(Some(Match::must(0, 0..5)), re.find(hay));
3186///
3187/// // We can also match between code units.
3188/// let re = builder.build(r"")?;
3189/// let hay = "☃";
3190/// assert_eq!(re.find_iter(hay).collect::<Vec<Match>>(), vec![
3191/// Match::must(0, 0..0),
3192/// Match::must(0, 1..1),
3193/// Match::must(0, 2..2),
3194/// Match::must(0, 3..3),
3195/// ]);
3196///
3197/// # Ok::<(), Box<dyn std::error::Error>>(())
3198/// ```
3199#[derive(Clone, Debug)]
3200pub struct Builder {
3201 config: Config,
3202 ast: ast::parse::ParserBuilder,
3203 hir: hir::translate::TranslatorBuilder,
3204}
3205
3206impl Builder {
3207 /// Creates a new builder for configuring and constructing a [`Regex`].
3208 pub fn new() -> Builder {
3209 Builder {
3210 config: Config::default(),
3211 ast: ast::parse::ParserBuilder::new(),
3212 hir: hir::translate::TranslatorBuilder::new(),
3213 }
3214 }
3215
3216 /// Builds a `Regex` from a single pattern string.
3217 ///
3218 /// If there was a problem parsing the pattern or a problem turning it into
3219 /// a regex matcher, then an error is returned.
3220 ///
3221 /// # Example
3222 ///
3223 /// This example shows how to configure syntax options.
3224 ///
3225 /// ```
3226 /// use regex_automata::{meta::Regex, util::syntax, Match};
3227 ///
3228 /// let re = Regex::builder()
3229 /// .syntax(syntax::Config::new().crlf(true).multi_line(true))
3230 /// .build(r"^foo$")?;
3231 /// let hay = "\r\nfoo\r\n";
3232 /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
3233 ///
3234 /// # Ok::<(), Box<dyn std::error::Error>>(())
3235 /// ```
3236 pub fn build(&self, pattern: &str) -> Result<Regex, BuildError> {
3237 self.build_many(&[pattern])
3238 }
3239
3240 /// Builds a `Regex` from many pattern strings.
3241 ///
3242 /// If there was a problem parsing any of the patterns or a problem turning
3243 /// them into a regex matcher, then an error is returned.
3244 ///
3245 /// # Example: finding the pattern that caused an error
3246 ///
3247 /// When a syntax error occurs, it is possible to ask which pattern
3248 /// caused the syntax error.
3249 ///
3250 /// ```
3251 /// use regex_automata::{meta::Regex, PatternID};
3252 ///
3253 /// let err = Regex::builder()
3254 /// .build_many(&["a", "b", r"\p{Foo}", "c"])
3255 /// .unwrap_err();
3256 /// assert_eq!(Some(PatternID::must(2)), err.pattern());
3257 /// ```
3258 ///
3259 /// # Example: zero patterns is valid
3260 ///
3261 /// Building a regex with zero patterns results in a regex that never
3262 /// matches anything. Because this routine is generic, passing an empty
3263 /// slice usually requires a turbo-fish (or something else to help type
3264 /// inference).
3265 ///
3266 /// ```
3267 /// use regex_automata::{meta::Regex, util::syntax, Match};
3268 ///
3269 /// let re = Regex::builder()
3270 /// .build_many::<&str>(&[])?;
3271 /// assert_eq!(None, re.find(""));
3272 ///
3273 /// # Ok::<(), Box<dyn std::error::Error>>(())
3274 /// ```
3275 pub fn build_many<P: AsRef<str>>(&self, patterns: &[P]) -> Result<Regex, BuildError> {
3276 use crate::util::primitives::IteratorIndexExt;
3277
3278 let (mut asts, mut hirs) = (vec![], vec![]);
3279 for (pid, p) in patterns.iter().with_pattern_ids() {
3280 let ast =
3281 self.ast.build().parse(p.as_ref()).map_err(|err| BuildError::ast(pid, err))?;
3282 asts.push(ast);
3283 }
3284 for ((pid, p), ast) in patterns.iter().with_pattern_ids().zip(asts.iter()) {
3285 let hir = self
3286 .hir
3287 .build()
3288 .translate(p.as_ref(), ast)
3289 .map_err(|err| BuildError::hir(pid, err))?;
3290 hirs.push(hir);
3291 }
3292 self.build_many_from_hir(&hirs)
3293 }
3294
3295 /// Builds a `Regex` directly from an `Hir` expression.
3296 ///
3297 /// This is useful if you needed to parse a pattern string into an `Hir`
3298 /// for other reasons (such as analysis or transformations). This routine
3299 /// permits building a `Regex` directly from the `Hir` expression instead
3300 /// of first converting the `Hir` back to a pattern string.
3301 ///
3302 /// When using this method, any options set via [`Builder::syntax`] are
3303 /// ignored. Namely, the syntax options only apply when parsing a pattern
3304 /// string, which isn't relevant here.
3305 ///
3306 /// If there was a problem building the underlying regex matcher for the
3307 /// given `Hir`, then an error is returned.
3308 ///
3309 /// # Example
3310 ///
3311 /// This example shows how one can hand-construct an `Hir` expression and
3312 /// build a regex from it without doing any parsing at all.
3313 ///
3314 /// ```
3315 /// use {
3316 /// regex_automata::{meta::Regex, Match},
3317 /// regex_syntax::hir::{Hir, Look},
3318 /// };
3319 ///
3320 /// // (?Rm)^foo$
3321 /// let hir = Hir::concat(vec![
3322 /// Hir::look(Look::StartCRLF),
3323 /// Hir::literal("foo".as_bytes()),
3324 /// Hir::look(Look::EndCRLF),
3325 /// ]);
3326 /// let re = Regex::builder()
3327 /// .build_from_hir(&hir)?;
3328 /// let hay = "\r\nfoo\r\n";
3329 /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
3330 ///
3331 /// Ok::<(), Box<dyn std::error::Error>>(())
3332 /// ```
3333 pub fn build_from_hir<C: Cursor>(&self, hir: &Hir) -> Result<Regex, BuildError> {
3334 self.build_many_from_hir(&[hir])
3335 }
3336
3337 /// Builds a `Regex` directly from many `Hir` expressions.
3338 ///
3339 /// This is useful if you needed to parse pattern strings into `Hir`
3340 /// expressions for other reasons (such as analysis or transformations).
3341 /// This routine permits building a `Regex` directly from the `Hir`
3342 /// expressions instead of first converting the `Hir` expressions back to
3343 /// pattern strings.
3344 ///
3345 /// When using this method, any options set via [`Builder::syntax`] are
3346 /// ignored. Namely, the syntax options only apply when parsing a pattern
3347 /// string, which isn't relevant here.
3348 ///
3349 /// If there was a problem building the underlying regex matcher for the
3350 /// given `Hir` expressions, then an error is returned.
3351 ///
3352 /// Note that unlike [`Builder::build_many`], this can only fail as a
3353 /// result of building the underlying matcher. In that case, there is
3354 /// no single `Hir` expression that can be isolated as a reason for the
3355 /// failure. So if this routine fails, it's not possible to determine which
3356 /// `Hir` expression caused the failure.
3357 ///
3358 /// # Example
3359 ///
3360 /// This example shows how one can hand-construct multiple `Hir`
3361 /// expressions and build a single regex from them without doing any
3362 /// parsing at all.
3363 ///
3364 /// ```
3365 /// use {
3366 /// regex_automata::{meta::Regex, Match},
3367 /// regex_syntax::hir::{Hir, Look},
3368 /// };
3369 ///
3370 /// // (?Rm)^foo$
3371 /// let hir1 = Hir::concat(vec![
3372 /// Hir::look(Look::StartCRLF),
3373 /// Hir::literal("foo".as_bytes()),
3374 /// Hir::look(Look::EndCRLF),
3375 /// ]);
3376 /// // (?Rm)^bar$
3377 /// let hir2 = Hir::concat(vec![
3378 /// Hir::look(Look::StartCRLF),
3379 /// Hir::literal("bar".as_bytes()),
3380 /// Hir::look(Look::EndCRLF),
3381 /// ]);
3382 /// let re = Regex::builder()
3383 /// .build_many_from_hir(&[&hir1, &hir2])?;
3384 /// let hay = "\r\nfoo\r\nbar";
3385 /// let got: Vec<Match> = re.find_iter(hay).collect();
3386 /// let expected = vec![
3387 /// Match::must(0, 2..5),
3388 /// Match::must(1, 7..10),
3389 /// ];
3390 /// assert_eq!(expected, got);
3391 ///
3392 /// Ok::<(), Box<dyn std::error::Error>>(())
3393 /// ```
3394 pub fn build_many_from_hir<H: Borrow<Hir>>(&self, hirs: &[H]) -> Result<Regex, BuildError> {
3395 let config = self.config.clone();
3396 // We collect the HIRs into a vec so we can write internal routines
3397 // with '&[&Hir]'. i.e., Don't use generics everywhere to keep code
3398 // bloat down..
3399 let hirs: Vec<&Hir> = hirs.iter().map(|hir| hir.borrow()).collect();
3400 let info = RegexInfo::new(config, &hirs);
3401 let strat = Strategy::new(&info, &hirs)?;
3402 let pool = {
3403 let strat = Arc::clone(&strat);
3404 let create: CachePoolFn = Box::new(move || strat.create_cache());
3405 Pool::new(create)
3406 };
3407 Ok(Regex { imp: Arc::new(RegexI { strat, info }), pool })
3408 }
3409
3410 /// Configure the behavior of a `Regex`.
3411 ///
3412 /// This configuration controls non-syntax options related to the behavior
3413 /// of a `Regex`. This includes things like whether empty matches can split
3414 /// a codepoint, prefilters, line terminators and a long list of options
3415 /// for configuring which regex engines the meta regex engine will be able
3416 /// to use internally.
3417 ///
3418 /// # Example
3419 ///
3420 /// This example shows how to disable UTF-8 empty mode. This will permit
3421 /// empty matches to occur between the UTF-8 encoding of a codepoint.
3422 ///
3423 /// ```
3424 /// use regex_automata::{meta::Regex, Match};
3425 ///
3426 /// let re = Regex::new("")?;
3427 /// let got: Vec<Match> = re.find_iter("☃").collect();
3428 /// // Matches only occur at the beginning and end of the snowman.
3429 /// assert_eq!(got, vec![
3430 /// Match::must(0, 0..0),
3431 /// Match::must(0, 3..3),
3432 /// ]);
3433 ///
3434 /// let re = Regex::builder()
3435 /// .configure(Regex::config().utf8_empty(false))
3436 /// .build("")?;
3437 /// let got: Vec<Match> = re.find_iter("☃").collect();
3438 /// // Matches now occur at every position!
3439 /// assert_eq!(got, vec![
3440 /// Match::must(0, 0..0),
3441 /// Match::must(0, 1..1),
3442 /// Match::must(0, 2..2),
3443 /// Match::must(0, 3..3),
3444 /// ]);
3445 ///
3446 /// Ok::<(), Box<dyn std::error::Error>>(())
3447 /// ```
3448 pub fn configure(&mut self, config: Config) -> &mut Builder {
3449 self.config = self.config.overwrite(config);
3450 self
3451 }
3452
3453 /// Configure the syntax options when parsing a pattern string while
3454 /// building a `Regex`.
3455 ///
3456 /// These options _only_ apply when [`Builder::build`] or [`Builder::build_many`]
3457 /// are used. The other build methods accept `Hir` values, which have
3458 /// already been parsed.
3459 ///
3460 /// # Example
3461 ///
3462 /// This example shows how to enable case insensitive mode.
3463 ///
3464 /// ```
3465 /// use regex_automata::{meta::Regex, util::syntax, Match};
3466 ///
3467 /// let re = Regex::builder()
3468 /// .syntax(syntax::Config::new().case_insensitive(true))
3469 /// .build(r"δ")?;
3470 /// assert_eq!(Some(Match::must(0, 0..2)), re.find(r"Δ"));
3471 ///
3472 /// Ok::<(), Box<dyn std::error::Error>>(())
3473 /// ```
3474 pub fn syntax(&mut self, config: regex_automata::util::syntax::Config) -> &mut Builder {
3475 self.ast
3476 .ignore_whitespace(config.get_ignore_whitespace())
3477 .nest_limit(config.get_nest_limit())
3478 .octal(config.get_octal());
3479 self.hir
3480 .unicode(config.get_unicode())
3481 .case_insensitive(config.get_case_insensitive())
3482 .multi_line(config.get_multi_line())
3483 .crlf(config.get_crlf())
3484 .dot_matches_new_line(config.get_dot_matches_new_line())
3485 .line_terminator(config.get_line_terminator())
3486 .swap_greed(config.get_swap_greed())
3487 .utf8(config.get_utf8());
3488 self
3489 }
3490}
3491
3492// #[cfg(test)]
3493// mod tests {
3494// use super::*;
3495
3496// // I found this in the course of building out the benchmark suite for
3497// // rebar.
3498// #[test]
3499// fn regression_suffix_literal_count() {
3500// let _ = env_logger::try_init();
3501
3502// let re = Regex::new(r"[a-zA-Z]+ing").unwrap();
3503// assert_eq!(1, re.find_iter("tingling").count());
3504// }
3505// }