1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
/*!
Types and routines that support the search APIs of most regex engines.
This sub-module isn't exposed directly, but rather, its contents are exported
at the crate root due to the universality of most of the types and routines in
this module.
*/
use std::ops::RangeBounds;
use regex_automata::{Anchored, Span};
use crate::cursor::{Cursor, IntoCursor};
use crate::util::utf8::is_boundary;
const MAX_CODEPOINT_LEN: usize = 4;
#[derive(Clone)]
pub struct Input<C: Cursor> {
// span: Span,
anchored: Anchored,
earliest: bool,
/// Position within the current chunk
pub(crate) chunk_pos: usize,
span: Span,
look_behind_len: usize,
/// the last 4 bytes before the current chunk
look_around: [u8; MAX_CODEPOINT_LEN * 2],
cursor: C,
}
impl<C: Cursor> Input<C> {
/// Create a new search configuration for the given cursor.
#[inline]
pub fn new<T: IntoCursor<Cursor = C>>(cursor: T) -> Self {
let cursor = cursor.into_cursor();
let end = cursor.total_bytes().unwrap_or(usize::MAX);
let start = cursor.offset();
Input {
anchored: Anchored::No,
earliest: false,
chunk_pos: 0,
cursor: cursor.into_cursor(),
// init with invalid utf8. We don't need to track
// which of these have been filed since we only look
// behind more than one byte in utf8 mode
look_around: [255; 8],
span: Span { start, end },
look_behind_len: 0,
}
}
/// Return a borrow of the current underlying chunk as a slice of bytes.
///
/// # Example
///
/// ```
/// use ropey_regex::Input;
///
/// let input = Input::new("foobar".into());
/// assert_eq!(b"foobar", input.chunk());
/// ```
#[cfg_attr(feature = "perf-inline", inline(always))]
pub fn chunk(&self) -> &[u8] {
self.cursor.chunk()
}
/// Return a borrow of the current underlying chunk as a slice of bytes.
///
/// # Example
///
/// ```
/// use ropey_regex::Input;
///
/// let input = Input::new("foobar".into());
/// assert_eq!(b"foobar", input.chunk());
/// ```
#[cfg_attr(feature = "perf-inline", inline(always))]
pub fn chunk_offset(&self) -> usize {
self.cursor.offset()
}
/// Return the start position of this search.
///
/// This is a convenience routine for `search.get_span().start()`.
///
/// When [`Input::is_done`] is `false`, this is guaranteed to return
/// an offset that is less than or equal to [`Input::end`]. Otherwise,
/// the offset is one greater than [`Input::end`].
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let input = Input::new("foobar");
/// assert_eq!(0, input.start());
///
/// let input = Input::new("foobar").span(2..4);
/// assert_eq!(2, input.start());
/// ```
#[inline]
pub fn start(&self) -> usize {
self.get_span().start
}
#[inline]
pub fn clear_look_behind(&mut self) {
self.look_around = [255; 8];
}
/// Return the end position of this search.
///
/// This is a convenience routine for `search.get_span().end()`.
///
/// This is guaranteed to return an offset that is a valid exclusive end
/// bound for this input's haystack.
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let input = Input::new("foobar");
/// assert_eq!(6, input.end());
///
/// let input = Input::new("foobar").span(2..4);
/// assert_eq!(4, input.end());
/// ```
#[inline]
pub fn end(&self) -> usize {
self.span.end
}
#[inline(always)]
pub fn get_chunk_end(&self) -> usize {
let end = self.span.end - self.cursor.offset();
end.min(self.chunk().len())
}
/// Return the span for this search configuration.
///
/// If one was not explicitly set, then the span corresponds to the entire
/// range of the haystack.
///
/// When [`Input::is_done`] is `false`, the span returned is guaranteed
/// to correspond to valid bounds for this input's haystack.
///
/// # Example
///
/// ```
/// use regex_automata::{Input, Span};
///
/// let input = Input::new("foobar");
/// assert_eq!(Span { start: 0, end: 6 }, input.get_span());
/// ```
#[inline]
pub fn get_span(&self) -> Span {
self.span
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn set_look_behind(&mut self) {
#[cold]
fn copy_partial_look_behind(look_behind: &mut [u8; MAX_CODEPOINT_LEN * 2], chunk: &[u8]) {
look_behind[..chunk.len()].copy_from_slice(chunk)
}
let chunk = self.cursor.chunk();
let len = chunk.len();
if len < MAX_CODEPOINT_LEN {
copy_partial_look_behind(&mut self.look_around, chunk);
self.look_behind_len = chunk.len();
} else {
self.look_behind_len = MAX_CODEPOINT_LEN;
self.look_around[..MAX_CODEPOINT_LEN].copy_from_slice(&chunk[len - MAX_CODEPOINT_LEN..])
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn advance(&mut self) -> bool {
let old_len = self.cursor.chunk().len();
let advanced = self.cursor.advance();
if advanced {
self.chunk_pos = 0;
} else if self.span.end > self.cursor.offset() + old_len {
self.span.end = self.cursor.offset() + old_len;
}
advanced
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn advance_with_look_behind(&mut self) -> bool {
self.set_look_behind();
self.advance()
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn backtrack(&mut self) -> bool {
let backtracked = self.cursor.backtrack();
if backtracked {
self.chunk_pos = self.chunk().len();
} else if self.cursor.offset() != 0 {
unreachable!("cursor does not support backtracking {}", self.cursor.offset())
}
backtracked
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn ensure_look_behind(&mut self) -> Option<u8> {
if self.chunk_pos == 0 {
// move back to the last chunk to read the look behind
if self.backtrack() {
self.advance_with_look_behind();
Some(self.look_around[self.look_behind_len - 1])
} else {
self.look_behind_len = 0;
None
}
} else {
self.chunk().get(self.chunk_pos - 1).copied()
}
}
pub fn look_around(&mut self) -> (&[u8], usize) {
// TODO: cache look_ahead?
if self.chunk_pos == 0 {
#[cold]
fn copy_partial_look_ahead(look_behind: &mut [u8], chunk: &[u8]) {
look_behind[..chunk.len()].copy_from_slice(chunk)
}
let chunk = self.cursor.chunk();
let look_around_len;
if chunk.len() < MAX_CODEPOINT_LEN {
look_around_len = self.look_behind_len + chunk.len();
copy_partial_look_ahead(&mut self.look_around[self.look_behind_len..], chunk);
} else {
look_around_len = self.look_behind_len + MAX_CODEPOINT_LEN;
self.look_around[self.look_behind_len..look_around_len]
.copy_from_slice(&chunk[..MAX_CODEPOINT_LEN])
}
(&self.look_around[..look_around_len], self.look_behind_len)
} else {
(self.chunk(), self.chunk_pos)
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn chunk_pos(&self) -> usize {
self.chunk_pos
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn set_chunk_pos(&mut self, at: usize) {
self.chunk_pos = at;
}
/// Sets the anchor mode of a search.
///
/// When a search is anchored (so that's [`Anchored::Yes`] or
/// [`Anchored::Pattern`]), a match must begin at the start of a search.
/// When a search is not anchored (that's [`Anchored::No`]), regex engines
/// will behave as if the pattern started with a `(?:s-u.)*?`. This prefix
/// permits a match to appear anywhere.
///
/// By default, the anchored mode is [`Anchored::No`].
///
/// **WARNING:** this is subtly different than using a `^` at the start of
/// your regex. A `^` forces a regex to match exclusively at the start of
/// a chunk, regardless of where you begin your search. In contrast,
/// anchoring a search will allow your regex to match anywhere in your
/// chunk, but the match must start at the beginning of a search.
///
/// For example, consider the chunk `aba` and the following searches:
///
/// 1. The regex `^a` is compiled with `Anchored::No` and searches `aba`
/// starting at position `2`. Since `^` requires the match to start at
/// the beginning of the chunk and `2 > 0`, no match is found.
/// 2. The regex `a` is compiled with `Anchored::Yes` and searches `aba`
/// starting at position `2`. This reports a match at `[2, 3]` since
/// the match starts where the search started. Since there is no `^`,
/// there is no requirement for the match to start at the beginning of
/// the chunk.
/// 3. The regex `a` is compiled with `Anchored::Yes` and searches `aba`
/// starting at position `1`. Since `b` corresponds to position `1` and
/// since the search is anchored, it finds no match. While the regex
/// matches at other positions, configuring the search to be anchored
/// requires that it only report a match that begins at the same offset
/// as the beginning of the search.
/// 4. The regex `a` is compiled with `Anchored::No` and searches `aba`
/// startting at position `1`. Since the search is not anchored and
/// the regex does not start with `^`, the search executes as if there
/// is a `(?s:.)*?` prefix that permits it to match anywhere. Thus, it
/// reports a match at `[2, 3]`.
///
/// Note that the [`Anchored::Pattern`] mode is like `Anchored::Yes`,
/// except it only reports matches for a particular pattern.
///
/// # Example
///
/// This demonstrates the differences between an anchored search and
/// a pattern that begins with `^` (as described in the above warning
/// message).
///
/// ```
/// use regex_automata::{
/// nfa::thompson::pikevm::PikeVM,
/// Anchored, Match, Input,
/// };
///
/// let chunk = "aba";
///
/// let re = PikeVM::new(r"^a")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let input = Input::new(chunk).span(2..3).anchored(Anchored::No);
/// re.search(&mut cache, &input, &mut caps);
/// // No match is found because 2 is not the beginning of the chunk,
/// // which is what ^ requires.
/// assert_eq!(None, caps.get_match());
///
/// let re = PikeVM::new(r"a")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let input = Input::new(chunk).span(2..3).anchored(Anchored::Yes);
/// re.search(&mut cache, &input, &mut caps);
/// // An anchored search can still match anywhere in the chunk, it just
/// // must begin at the start of the search which is '2' in this case.
/// assert_eq!(Some(Match::must(0, 2..3)), caps.get_match());
///
/// let re = PikeVM::new(r"a")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let input = Input::new(chunk).span(1..3).anchored(Anchored::Yes);
/// re.search(&mut cache, &input, &mut caps);
/// // No match is found since we start searching at offset 1 which
/// // corresponds to 'b'. Since there is no '(?s:.)*?' prefix, no match
/// // is found.
/// assert_eq!(None, caps.get_match());
///
/// let re = PikeVM::new(r"a")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let input = Input::new(chunk).span(1..3).anchored(Anchored::No);
/// re.search(&mut cache, &input, &mut caps);
/// // Since anchored=no, an implicit '(?s:.)*?' prefix was added to the
/// // pattern. Even though the search starts at 'b', the 'match anything'
/// // prefix allows the search to match 'a'.
/// let expected = Some(Match::must(0, 2..3));
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn anchored(&mut self, mode: Anchored) -> &mut Self {
self.set_anchored(mode);
self
}
/// Whether to execute an "earliest" search or not.
///
/// When running a non-overlapping search, an "earliest" search will return
/// the match location as early as possible. For example, given a pattern
/// of `foo[0-9]+` and a chunk of `foo12345`, a normal leftmost search
/// will return `foo12345` as a match. But an "earliest" search for regex
/// engines that support "earliest" semantics will return `foo1` as a
/// match, since as soon as the first digit following `foo` is seen, it is
/// known to have found a match.
///
/// Note that "earliest" semantics generally depend on the regex engine.
/// Different regex engines may determine there is a match at different
/// points. So there is no guarantee that "earliest" matches will always
/// return the same offsets for all regex engines. The "earliest" notion
/// is really about when the particular regex engine determines there is
/// a match rather than a consistent semantic unto itself. This is often
/// useful for implementing "did a match occur or not" predicates, but
/// sometimes the offset is useful as well.
///
/// This is disabled by default.
///
/// # Example
///
/// This example shows the difference between "earliest" searching and
/// normal searching.
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match, Input};
///
/// let re = PikeVM::new(r"foo[0-9]+")?;
/// let mut cache = re.create_cache();
/// let mut caps = re.create_captures();
///
/// // A normal search implements greediness like you expect.
/// let input = Input::new("foo12345");
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 0..8)), caps.get_match());
///
/// // When 'earliest' is enabled and the regex engine supports
/// // it, the search will bail once it knows a match has been
/// // found.
/// let input = Input::new("foo12345").earliest(true);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 0..4)), caps.get_match());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn earliest(&mut self, yes: bool) -> &mut Self {
self.set_earliest(yes);
self
}
/// Set the anchor mode of a search.
///
/// This is like [`Input::anchored`], except it mutates the search
/// configuration in place.
///
/// # Example
///
/// ```
/// use regex_automata::{Anchored, Input, PatternID};
///
/// let mut input = Input::new("foobar");
/// assert_eq!(Anchored::No, input.get_anchored());
///
/// let pid = PatternID::must(5);
/// input.set_anchored(Anchored::Pattern(pid));
/// assert_eq!(Anchored::Pattern(pid), input.get_anchored());
/// ```
#[inline]
pub fn set_anchored(&mut self, mode: Anchored) {
self.anchored = mode;
}
/// Set whether the search should execute in "earliest" mode or not.
///
/// This is like [`Input::earliest`], except it mutates the search
/// configuration in place.
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let mut input = Input::new("foobar");
/// assert!(!input.get_earliest());
/// input.set_earliest(true);
/// assert!(input.get_earliest());
/// ```
#[inline]
pub fn set_earliest(&mut self, yes: bool) {
self.earliest = yes;
}
/// Set the span for this search.
///
/// This routine does not panic if the span given is not a valid range for
/// this search's haystack. If this search is run with an invalid range,
/// then the most likely outcome is that the actual search execution will
/// panic.
///
/// This routine is generic over how a span is provided. While
/// a [`Span`] may be given directly, one may also provide a
/// `std::ops::Range<usize>`. To provide anything supported by range
/// syntax, use the [`Input::range`] method.
///
/// The default span is the entire haystack.
///
/// Note that [`Input::range`] overrides this method and vice versa.
///
/// # Panics
///
/// This panics if the given span does not correspond to valid bounds in
/// the haystack or the termination of a search.
///
/// # Example
///
/// This example shows how the span of the search can impact whether a
/// match is reported or not. This is particularly relevant for look-around
/// operators, which might take things outside of the span into account
/// when determining whether they match.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// nfa::thompson::pikevm::PikeVM,
/// Match, Input,
/// };
///
/// // Look for 'at', but as a distinct word.
/// let re = PikeVM::new(r"\bat\b")?;
/// let mut cache = re.create_cache();
/// let mut caps = re.create_captures();
///
/// // Our haystack contains 'at', but not as a distinct word.
/// let haystack = "batter";
///
/// // A standard search finds nothing, as expected.
/// let input = Input::new(haystack);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(None, caps.get_match());
///
/// // But if we wanted to search starting at position '1', we might
/// // slice the haystack. If we do this, it's impossible for the \b
/// // anchors to take the surrounding context into account! And thus,
/// // a match is produced.
/// let input = Input::new(&haystack[1..3]);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 0..2)), caps.get_match());
///
/// // But if we specify the span of the search instead of slicing the
/// // haystack, then the regex engine can "see" outside of the span
/// // and resolve the anchors correctly.
/// let input = Input::new(haystack).span(1..3);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(None, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// This may seem a little ham-fisted, but this scenario tends to come up
/// if some other regex engine found the match span and now you need to
/// re-process that span to look for capturing groups. (e.g., Run a faster
/// DFA first, find a match, then run the PikeVM on just the match span to
/// resolve capturing groups.) In order to implement that sort of logic
/// correctly, you need to set the span on the search instead of slicing
/// the haystack directly.
///
/// The other advantage of using this routine to specify the bounds of the
/// search is that the match offsets are still reported in terms of the
/// original haystack. For example, the second search in the example above
/// reported a match at position `0`, even though `at` starts at offset
/// `1` because we sliced the haystack.
#[inline]
pub fn span<S: Into<Span>>(&mut self, span: S) -> &mut Input<C> {
self.set_span(span);
self
}
/// Set the starting offset for the span for this search configuration.
///
/// This is a convenience routine for only mutating the start of a span
/// without having to set the entire span.
///
/// # Panics
///
/// This panics if the span resulting from the new start position does not
/// correspond to valid bounds in the haystack or the termination of a
/// search.
///
#[inline]
pub fn set_start(&mut self, start: usize) {
self.set_span(Span { start, ..self.get_span() });
}
/// Set the ending offset for the span for this search configuration.
///
/// This is a convenience routine for only mutating the end of a span
/// without having to set the entire span.
///
/// # Panics
///
/// This panics if the span resulting from the new end position does not
/// correspond to valid bounds in the haystack or the termination of a
/// search.
#[inline]
pub fn set_end(&mut self, end: usize) {
self.set_span(Span { end, ..self.get_span() });
}
/// Like `Input::span`, but accepts any range instead.
///
/// This routine does not panic if the range given is not a valid range for
/// this search's haystack. If this search is run with an invalid range,
/// then the most likely outcome is that the actual search execution will
/// panic.
///
/// The default range is the entire haystack.
///
/// Note that [`Input::span`] overrides this method and vice versa.
///
/// # Panics
///
/// This routine will panic if the given range could not be converted
/// to a valid [`Range`]. For example, this would panic when given
/// `0..=usize::MAX` since it cannot be represented using a half-open
/// interval in terms of `usize`.
///
/// This also panics if the given range does not correspond to valid bounds
/// in the haystack or the termination of a search.
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let input = Input::new("foobar");
/// assert_eq!(0..6, input.get_range());
///
/// let input = Input::new("foobar").range(2..=4);
/// assert_eq!(2..5, input.get_range());
/// ```
#[inline]
pub fn range<R: RangeBounds<usize>>(mut self, range: R) -> Input<C> {
self.set_range(range);
self
}
/// Set the span for this search configuration.
///
/// This is like the [`Input::span`] method, except this mutates the
/// span in place.
///
/// This routine is generic over how a span is provided. While
/// a [`Span`] may be given directly, one may also provide a
/// `std::ops::Range<usize>`.
///
/// # Panics
///
/// This panics if the given span does not correspond to valid bounds in
/// the haystack or the termination of a search.
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let mut input = Input::new("foobar");
/// assert_eq!(0..6, input.get_range());
/// input.set_span(2..4);
/// assert_eq!(2..4, input.get_range());
/// ```
#[inline]
pub fn set_span<S: Into<Span>>(&mut self, span: S) {
let span = span.into();
assert!(span.start <= span.end.saturating_add(1), "invalid span {:?}", span,);
if self.at() < span.start {
self.move_to(span.start);
} else if !self.is_done() && self.at() > span.end {
self.move_to(span.end);
}
self.span = span;
}
#[inline]
pub(crate) fn move_to(&mut self, at: usize) {
debug_assert!(at <= self.span.end.saturating_add(1));
// TODO: fastpath for O(log N) chunk jumping
while at < self.cursor.offset() {
self.backtrack();
}
if at != self.cursor.offset() {
while at >= self.cursor.offset() + self.chunk().len() {
let advanced = self.advance();
if !advanced {
let chunk_pos = (at - self.cursor.offset()).min(self.chunk().len());
self.set_chunk_pos(chunk_pos);
return;
}
}
}
self.set_chunk_pos(at - self.cursor.offset());
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn at(&self) -> usize {
self.cursor.offset() + self.chunk_pos()
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn with<T>(&mut self, f: impl FnOnce(&mut Self) -> T) -> T {
let anchored = self.anchored;
let earliest = self.earliest;
let span = self.span;
let res = f(self);
self.set_span(span);
self.set_earliest(earliest);
self.set_anchored(anchored);
res
}
// #[cfg_attr(feature = "perf-inline", inline(always))]
// pub(crate) fn try_clone(&self) -> Option<Input<C>> {
// let res = Input {
// cursor: self.cursor.try_clone()?,
// anchored: self.anchored,
// earliest: self.earliest,
// offset: self.offset,
// chunk_pos: self.chunk_pos,
// span: self.span,
// look_behind: self.look_behind,
// };
// Some(res)
// }
/// Set the span for this search configuration given any range.
///
/// This is like the [`Input::range`] method, except this mutates the
/// span in place.
///
/// This routine does not panic if the range given is not a valid range for
/// this search's haystack. If this search is run with an invalid range,
/// then the most likely outcome is that the actual search execution will
/// panic.
///
/// # Panics
///
/// This routine will panic if the given range could not be converted
/// to a valid [`Range`]. For example, this would panic when given
/// `0..=usize::MAX` since it cannot be represented using a half-open
/// interval in terms of `usize`.
///
/// This also panics if the given span does not correspond to valid bounds
/// in the haystack or the termination of a search.
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let mut input = Input::new("foobar");
/// assert_eq!(0..6, input.get_range());
/// input.set_range(2..=4);
/// assert_eq!(2..5, input.get_range());
/// ```
#[inline]
pub fn set_range<R: RangeBounds<usize>>(&mut self, range: R) {
use core::ops::Bound;
// It's a little weird to convert ranges into spans, and then spans
// back into ranges when we actually slice the haystack. Because
// of that process, we always represent everything as a half-open
// internal. Therefore, handling things like m..=n is a little awkward.
let start = match range.start_bound() {
Bound::Included(&i) => i,
// Can this case ever happen? Range syntax doesn't support it...
Bound::Excluded(&i) => i.checked_add(1).unwrap(),
Bound::Unbounded => 0,
};
let end = match range.end_bound() {
Bound::Included(&i) => i.checked_add(1).unwrap(),
Bound::Excluded(&i) => i,
Bound::Unbounded => usize::MAX,
};
self.set_span(Span { start, end });
}
/// Return the anchored mode for this search configuration.
///
/// If no anchored mode was set, then it defaults to [`Anchored::No`].
///
/// # Example
///
/// ```
/// use regex_automata::{Anchored, Input, PatternID};
///
/// let mut input = Input::new("foobar");
/// assert_eq!(Anchored::No, input.get_anchored());
///
/// let pid = PatternID::must(5);
/// input.set_anchored(Anchored::Pattern(pid));
/// assert_eq!(Anchored::Pattern(pid), input.get_anchored());
/// ```
#[inline]
pub fn get_anchored(&self) -> Anchored {
self.anchored
}
/// Return whether this search should execute in "earliest" mode.
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let input = Input::new("foobar");
/// assert!(!input.get_earliest());
/// ```
#[inline]
pub fn get_earliest(&self) -> bool {
self.earliest
}
/// Return true if and only if this search can never return any other
/// matches.
///
/// This occurs when the start position of this search is greater than the
/// end position of the search.
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let mut input = Input::new("foobar");
/// assert!(!input.is_done());
/// input.set_start(6);
/// assert!(!input.is_done());
/// input.set_start(7);
/// assert!(input.is_done());
/// ```
#[inline]
pub fn is_done(&self) -> bool {
self.get_span().start > self.get_span().end
}
/// Returns true if and only if the given offset in this search's chunk
/// falls on a valid UTF-8 encoded codepoint boundary.
///
/// If the chunk is not valid UTF-8, then the behavior of this routine
/// is unspecified.
///
/// # Example
///
/// This shows where codepoint bounardies do and don't exist in valid
/// UTF-8.
///
/// ```
/// use regex_automata::Input;
///
/// let input = Input::new("☃");
/// assert!(input.is_char_boundary(0));
/// assert!(!input.is_char_boundary(1));
/// assert!(!input.is_char_boundary(2));
/// assert!(input.is_char_boundary(3));
/// assert!(!input.is_char_boundary(4));
/// ```
#[inline]
pub fn is_char_boundary(&mut self) -> bool {
is_boundary(self.chunk(), self.chunk_pos)
}
}
impl<C: Cursor> core::fmt::Debug for Input<C> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
use regex_automata::util::escape::DebugHaystack;
f.debug_struct("Input")
.field("chunk", &DebugHaystack(self.chunk()))
.field("anchored", &self.anchored)
.field("earliest", &self.earliest)
.field("chunk_pos", &self.chunk_pos)
.field("chunk_offset", &self.cursor.offset())
.field("span", &self.span)
.finish()
}
}