regex_automata/util/
wire.rs

1/*!
2Types and routines that support the wire format of finite automata.
3
4Currently, this module just exports a few error types and some small helpers
5for deserializing [dense DFAs](crate::dfa::dense::DFA) using correct alignment.
6*/
7
8/*
9A collection of helper functions, types and traits for serializing automata.
10
11This crate defines its own bespoke serialization mechanism for some structures
12provided in the public API, namely, DFAs. A bespoke mechanism was developed
13primarily because structures like automata demand a specific binary format.
14Attempting to encode their rich structure in an existing serialization
15format is just not feasible. Moreover, the format for each structure is
16generally designed such that deserialization is cheap. More specifically, that
17deserialization can be done in constant time. (The idea being that you can
18embed it into your binary or mmap it, and then use it immediately.)
19
20In order to achieve this, the dense and sparse DFAs in this crate use an
21in-memory representation that very closely corresponds to its binary serialized
22form. This pervades and complicates everything, and in some cases, requires
23dealing with alignment and reasoning about safety.
24
25This technique does have major advantages. In particular, it permits doing
26the potentially costly work of compiling a finite state machine in an offline
27manner, and then loading it at runtime not only without having to re-compile
28the regex, but even without the code required to do the compilation. This, for
29example, permits one to use a pre-compiled DFA not only in environments without
30Rust's standard library, but also in environments without a heap.
31
32In the code below, whenever we insert some kind of padding, it's to enforce a
334-byte alignment, unless otherwise noted. Namely, u32 is the only state ID type
34supported. (In a previous version of this library, DFAs were generic over the
35state ID representation.)
36
37Also, serialization generally requires the caller to specify endianness,
38where as deserialization always assumes native endianness (otherwise cheap
39deserialization would be impossible). This implies that serializing a structure
40generally requires serializing both its big-endian and little-endian variants,
41and then loading the correct one based on the target's endianness.
42*/
43
44use core::{cmp, mem::size_of};
45
46#[cfg(feature = "alloc")]
47use alloc::{vec, vec::Vec};
48
49use crate::util::{
50    int::Pointer,
51    primitives::{PatternID, PatternIDError, StateID, StateIDError},
52};
53
54/// A hack to align a smaller type `B` with a bigger type `T`.
55///
56/// The usual use of this is with `B = [u8]` and `T = u32`. That is,
57/// it permits aligning a sequence of bytes on a 4-byte boundary. This
58/// is useful in contexts where one wants to embed a serialized [dense
59/// DFA](crate::dfa::dense::DFA) into a Rust a program while guaranteeing the
60/// alignment required for the DFA.
61///
62/// See [`dense::DFA::from_bytes`](crate::dfa::dense::DFA::from_bytes) for an
63/// example of how to use this type.
64#[repr(C)]
65#[derive(Debug)]
66pub struct AlignAs<B: ?Sized, T> {
67    /// A zero-sized field indicating the alignment we want.
68    pub _align: [T; 0],
69    /// A possibly non-sized field containing a sequence of bytes.
70    pub bytes: B,
71}
72
73/// An error that occurs when serializing an object from this crate.
74///
75/// Serialization, as used in this crate, universally refers to the process
76/// of transforming a structure (like a DFA) into a custom binary format
77/// represented by `&[u8]`. To this end, serialization is generally infallible.
78/// However, it can fail when caller provided buffer sizes are too small. When
79/// that occurs, a serialization error is reported.
80///
81/// A `SerializeError` provides no introspection capabilities. Its only
82/// supported operation is conversion to a human readable error message.
83///
84/// This error type implements the `std::error::Error` trait only when the
85/// `std` feature is enabled. Otherwise, this type is defined in all
86/// configurations.
87#[derive(Debug)]
88pub struct SerializeError {
89    /// The name of the thing that a buffer is too small for.
90    ///
91    /// Currently, the only kind of serialization error is one that is
92    /// committed by a caller: providing a destination buffer that is too
93    /// small to fit the serialized object. This makes sense conceptually,
94    /// since every valid inhabitant of a type should be serializable.
95    ///
96    /// This is somewhat exposed in the public API of this crate. For example,
97    /// the `to_bytes_{big,little}_endian` APIs return a `Vec<u8>` and are
98    /// guaranteed to never panic or error. This is only possible because the
99    /// implementation guarantees that it will allocate a `Vec<u8>` that is
100    /// big enough.
101    ///
102    /// In summary, if a new serialization error kind needs to be added, then
103    /// it will need careful consideration.
104    what: &'static str,
105}
106
107impl SerializeError {
108    pub(crate) fn buffer_too_small(what: &'static str) -> SerializeError {
109        SerializeError { what }
110    }
111}
112
113impl core::fmt::Display for SerializeError {
114    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
115        write!(f, "destination buffer is too small to write {}", self.what)
116    }
117}
118
119#[cfg(feature = "std")]
120impl std::error::Error for SerializeError {}
121
122/// An error that occurs when deserializing an object defined in this crate.
123///
124/// Serialization, as used in this crate, universally refers to the process
125/// of transforming a structure (like a DFA) into a custom binary format
126/// represented by `&[u8]`. Deserialization, then, refers to the process of
127/// cheaply converting this binary format back to the object's in-memory
128/// representation as defined in this crate. To the extent possible,
129/// deserialization will report this error whenever this process fails.
130///
131/// A `DeserializeError` provides no introspection capabilities. Its only
132/// supported operation is conversion to a human readable error message.
133///
134/// This error type implements the `std::error::Error` trait only when the
135/// `std` feature is enabled. Otherwise, this type is defined in all
136/// configurations.
137#[derive(Debug)]
138pub struct DeserializeError(DeserializeErrorKind);
139
140#[derive(Debug)]
141enum DeserializeErrorKind {
142    Generic { msg: &'static str },
143    BufferTooSmall { what: &'static str },
144    InvalidUsize { what: &'static str },
145    VersionMismatch { expected: u32, found: u32 },
146    EndianMismatch { expected: u32, found: u32 },
147    AlignmentMismatch { alignment: usize, address: usize },
148    LabelMismatch { expected: &'static str },
149    ArithmeticOverflow { what: &'static str },
150    PatternID { err: PatternIDError, what: &'static str },
151    StateID { err: StateIDError, what: &'static str },
152}
153
154impl DeserializeError {
155    pub(crate) fn generic(msg: &'static str) -> DeserializeError {
156        DeserializeError(DeserializeErrorKind::Generic { msg })
157    }
158
159    pub(crate) fn buffer_too_small(what: &'static str) -> DeserializeError {
160        DeserializeError(DeserializeErrorKind::BufferTooSmall { what })
161    }
162
163    fn invalid_usize(what: &'static str) -> DeserializeError {
164        DeserializeError(DeserializeErrorKind::InvalidUsize { what })
165    }
166
167    fn version_mismatch(expected: u32, found: u32) -> DeserializeError {
168        DeserializeError(DeserializeErrorKind::VersionMismatch {
169            expected,
170            found,
171        })
172    }
173
174    fn endian_mismatch(expected: u32, found: u32) -> DeserializeError {
175        DeserializeError(DeserializeErrorKind::EndianMismatch {
176            expected,
177            found,
178        })
179    }
180
181    fn alignment_mismatch(
182        alignment: usize,
183        address: usize,
184    ) -> DeserializeError {
185        DeserializeError(DeserializeErrorKind::AlignmentMismatch {
186            alignment,
187            address,
188        })
189    }
190
191    fn label_mismatch(expected: &'static str) -> DeserializeError {
192        DeserializeError(DeserializeErrorKind::LabelMismatch { expected })
193    }
194
195    fn arithmetic_overflow(what: &'static str) -> DeserializeError {
196        DeserializeError(DeserializeErrorKind::ArithmeticOverflow { what })
197    }
198
199    fn pattern_id_error(
200        err: PatternIDError,
201        what: &'static str,
202    ) -> DeserializeError {
203        DeserializeError(DeserializeErrorKind::PatternID { err, what })
204    }
205
206    pub(crate) fn state_id_error(
207        err: StateIDError,
208        what: &'static str,
209    ) -> DeserializeError {
210        DeserializeError(DeserializeErrorKind::StateID { err, what })
211    }
212}
213
214#[cfg(feature = "std")]
215impl std::error::Error for DeserializeError {}
216
217impl core::fmt::Display for DeserializeError {
218    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
219        use self::DeserializeErrorKind::*;
220
221        match self.0 {
222            Generic { msg } => write!(f, "{msg}"),
223            BufferTooSmall { what } => {
224                write!(f, "buffer is too small to read {what}")
225            }
226            InvalidUsize { what } => {
227                write!(f, "{what} is too big to fit in a usize")
228            }
229            VersionMismatch { expected, found } => write!(
230                f,
231                "unsupported version: \
232                 expected version {expected} but found version {found}",
233            ),
234            EndianMismatch { expected, found } => write!(
235                f,
236                "endianness mismatch: expected 0x{expected:X} but \
237                 got 0x{found:X}. (Are you trying to load an object \
238                 serialized with a different endianness?)",
239            ),
240            AlignmentMismatch { alignment, address } => write!(
241                f,
242                "alignment mismatch: slice starts at address 0x{address:X}, \
243                 which is not aligned to a {alignment} byte boundary",
244            ),
245            LabelMismatch { expected } => write!(
246                f,
247                "label mismatch: start of serialized object should \
248                 contain a NUL terminated {expected:?} label, but a different \
249                 label was found",
250            ),
251            ArithmeticOverflow { what } => {
252                write!(f, "arithmetic overflow for {what}")
253            }
254            PatternID { ref err, what } => {
255                write!(f, "failed to read pattern ID for {what}: {err}")
256            }
257            StateID { ref err, what } => {
258                write!(f, "failed to read state ID for {what}: {err}")
259            }
260        }
261    }
262}
263
264/// Safely converts a `&[u32]` to `&[StateID]` with zero cost.
265#[cfg_attr(feature = "perf-inline", inline(always))]
266pub(crate) fn u32s_to_state_ids(slice: &[u32]) -> &[StateID] {
267    // SAFETY: This is safe because StateID is defined to have the same memory
268    // representation as a u32 (it is repr(transparent)). While not every u32
269    // is a "valid" StateID, callers are not permitted to rely on the validity
270    // of StateIDs for memory safety. It can only lead to logical errors. (This
271    // is why StateID::new_unchecked is safe.)
272    unsafe {
273        core::slice::from_raw_parts(
274            slice.as_ptr().cast::<StateID>(),
275            slice.len(),
276        )
277    }
278}
279
280/// Safely converts a `&mut [u32]` to `&mut [StateID]` with zero cost.
281pub(crate) fn u32s_to_state_ids_mut(slice: &mut [u32]) -> &mut [StateID] {
282    // SAFETY: This is safe because StateID is defined to have the same memory
283    // representation as a u32 (it is repr(transparent)). While not every u32
284    // is a "valid" StateID, callers are not permitted to rely on the validity
285    // of StateIDs for memory safety. It can only lead to logical errors. (This
286    // is why StateID::new_unchecked is safe.)
287    unsafe {
288        core::slice::from_raw_parts_mut(
289            slice.as_mut_ptr().cast::<StateID>(),
290            slice.len(),
291        )
292    }
293}
294
295/// Safely converts a `&[u32]` to `&[PatternID]` with zero cost.
296#[cfg_attr(feature = "perf-inline", inline(always))]
297pub(crate) fn u32s_to_pattern_ids(slice: &[u32]) -> &[PatternID] {
298    // SAFETY: This is safe because PatternID is defined to have the same
299    // memory representation as a u32 (it is repr(transparent)). While not
300    // every u32 is a "valid" PatternID, callers are not permitted to rely
301    // on the validity of PatternIDs for memory safety. It can only lead to
302    // logical errors. (This is why PatternID::new_unchecked is safe.)
303    unsafe {
304        core::slice::from_raw_parts(
305            slice.as_ptr().cast::<PatternID>(),
306            slice.len(),
307        )
308    }
309}
310
311/// Checks that the given slice has an alignment that matches `T`.
312///
313/// This is useful for checking that a slice has an appropriate alignment
314/// before casting it to a &[T]. Note though that alignment is not itself
315/// sufficient to perform the cast for any `T`.
316pub(crate) fn check_alignment<T>(
317    slice: &[u8],
318) -> Result<(), DeserializeError> {
319    let alignment = core::mem::align_of::<T>();
320    let address = slice.as_ptr().as_usize();
321    if address % alignment == 0 {
322        return Ok(());
323    }
324    Err(DeserializeError::alignment_mismatch(alignment, address))
325}
326
327/// Reads a possibly empty amount of padding, up to 7 bytes, from the beginning
328/// of the given slice. All padding bytes must be NUL bytes.
329///
330/// This is useful because it can be theoretically necessary to pad the
331/// beginning of a serialized object with NUL bytes to ensure that it starts
332/// at a correctly aligned address. These padding bytes should come immediately
333/// before the label.
334///
335/// This returns the number of bytes read from the given slice.
336pub(crate) fn skip_initial_padding(slice: &[u8]) -> usize {
337    let mut nread = 0;
338    while nread < 7 && nread < slice.len() && slice[nread] == 0 {
339        nread += 1;
340    }
341    nread
342}
343
344/// Allocate a byte buffer of the given size, along with some initial padding
345/// such that `buf[padding..]` has the same alignment as `T`, where the
346/// alignment of `T` must be at most `8`. In particular, callers should treat
347/// the first N bytes (second return value) as padding bytes that must not be
348/// overwritten. In all cases, the following identity holds:
349///
350/// ```ignore
351/// let (buf, padding) = alloc_aligned_buffer::<StateID>(SIZE);
352/// assert_eq!(SIZE, buf[padding..].len());
353/// ```
354///
355/// In practice, padding is often zero.
356///
357/// The requirement for `8` as a maximum here is somewhat arbitrary. In
358/// practice, we never need anything bigger in this crate, and so this function
359/// does some sanity asserts under the assumption of a max alignment of `8`.
360#[cfg(feature = "alloc")]
361pub(crate) fn alloc_aligned_buffer<T>(size: usize) -> (Vec<u8>, usize) {
362    // NOTE: This is a kludge because there's no easy way to allocate a Vec<u8>
363    // with an alignment guaranteed to be greater than 1. We could create a
364    // Vec<u32>, but this cannot be safely transmuted to a Vec<u8> without
365    // concern, since reallocing or dropping the Vec<u8> is UB (different
366    // alignment than the initial allocation). We could define a wrapper type
367    // to manage this for us, but it seems like more machinery than it's worth.
368    let buf = vec![0; size];
369    let align = core::mem::align_of::<T>();
370    let address = buf.as_ptr().as_usize();
371    if address % align == 0 {
372        return (buf, 0);
373    }
374    // Let's try this again. We have to create a totally new alloc with
375    // the maximum amount of bytes we might need. We can't just extend our
376    // pre-existing 'buf' because that might create a new alloc with a
377    // different alignment.
378    let extra = align - 1;
379    let mut buf = vec![0; size + extra];
380    let address = buf.as_ptr().as_usize();
381    // The code below handles the case where 'address' is aligned to T, so if
382    // we got lucky and 'address' is now aligned to T (when it previously
383    // wasn't), then we're done.
384    if address % align == 0 {
385        buf.truncate(size);
386        return (buf, 0);
387    }
388    let padding = ((address & !(align - 1)).checked_add(align).unwrap())
389        .checked_sub(address)
390        .unwrap();
391    assert!(padding <= 7, "padding of {padding} is bigger than 7");
392    assert!(
393        padding <= extra,
394        "padding of {padding} is bigger than extra {extra} bytes",
395    );
396    buf.truncate(size + padding);
397    assert_eq!(size + padding, buf.len());
398    assert_eq!(
399        0,
400        buf[padding..].as_ptr().as_usize() % align,
401        "expected end of initial padding to be aligned to {align}",
402    );
403    (buf, padding)
404}
405
406/// Reads a NUL terminated label starting at the beginning of the given slice.
407///
408/// If a NUL terminated label could not be found, then an error is returned.
409/// Similarly, if a label is found but doesn't match the expected label, then
410/// an error is returned.
411///
412/// Upon success, the total number of bytes read (including padding bytes) is
413/// returned.
414pub(crate) fn read_label(
415    slice: &[u8],
416    expected_label: &'static str,
417) -> Result<usize, DeserializeError> {
418    // Set an upper bound on how many bytes we scan for a NUL. Since no label
419    // in this crate is longer than 256 bytes, if we can't find one within that
420    // range, then we have corrupted data.
421    let first_nul =
422        slice[..cmp::min(slice.len(), 256)].iter().position(|&b| b == 0);
423    let first_nul = match first_nul {
424        Some(first_nul) => first_nul,
425        None => {
426            return Err(DeserializeError::generic(
427                "could not find NUL terminated label \
428                 at start of serialized object",
429            ));
430        }
431    };
432    let len = first_nul + padding_len(first_nul);
433    if slice.len() < len {
434        return Err(DeserializeError::generic(
435            "could not find properly sized label at start of serialized object"
436        ));
437    }
438    if expected_label.as_bytes() != &slice[..first_nul] {
439        return Err(DeserializeError::label_mismatch(expected_label));
440    }
441    Ok(len)
442}
443
444/// Writes the given label to the buffer as a NUL terminated string. The label
445/// given must not contain NUL, otherwise this will panic. Similarly, the label
446/// must not be longer than 255 bytes, otherwise this will panic.
447///
448/// Additional NUL bytes are written as necessary to ensure that the number of
449/// bytes written is always a multiple of 4.
450///
451/// Upon success, the total number of bytes written (including padding) is
452/// returned.
453pub(crate) fn write_label(
454    label: &str,
455    dst: &mut [u8],
456) -> Result<usize, SerializeError> {
457    let nwrite = write_label_len(label);
458    if dst.len() < nwrite {
459        return Err(SerializeError::buffer_too_small("label"));
460    }
461    dst[..label.len()].copy_from_slice(label.as_bytes());
462    for i in 0..(nwrite - label.len()) {
463        dst[label.len() + i] = 0;
464    }
465    assert_eq!(nwrite % 4, 0);
466    Ok(nwrite)
467}
468
469/// Returns the total number of bytes (including padding) that would be written
470/// for the given label. This panics if the given label contains a NUL byte or
471/// is longer than 255 bytes. (The size restriction exists so that searching
472/// for a label during deserialization can be done in small bounded space.)
473pub(crate) fn write_label_len(label: &str) -> usize {
474    assert!(label.len() <= 255, "label must not be longer than 255 bytes");
475    assert!(label.bytes().all(|b| b != 0), "label must not contain NUL bytes");
476    let label_len = label.len() + 1; // +1 for the NUL terminator
477    label_len + padding_len(label_len)
478}
479
480/// Reads the endianness check from the beginning of the given slice and
481/// confirms that the endianness of the serialized object matches the expected
482/// endianness. If the slice is too small or if the endianness check fails,
483/// this returns an error.
484///
485/// Upon success, the total number of bytes read is returned.
486pub(crate) fn read_endianness_check(
487    slice: &[u8],
488) -> Result<usize, DeserializeError> {
489    let (n, nr) = try_read_u32(slice, "endianness check")?;
490    assert_eq!(nr, write_endianness_check_len());
491    if n != 0xFEFF {
492        return Err(DeserializeError::endian_mismatch(0xFEFF, n));
493    }
494    Ok(nr)
495}
496
497/// Writes 0xFEFF as an integer using the given endianness.
498///
499/// This is useful for writing into the header of a serialized object. It can
500/// be read during deserialization as a sanity check to ensure the proper
501/// endianness is used.
502///
503/// Upon success, the total number of bytes written is returned.
504pub(crate) fn write_endianness_check<E: Endian>(
505    dst: &mut [u8],
506) -> Result<usize, SerializeError> {
507    let nwrite = write_endianness_check_len();
508    if dst.len() < nwrite {
509        return Err(SerializeError::buffer_too_small("endianness check"));
510    }
511    E::write_u32(0xFEFF, dst);
512    Ok(nwrite)
513}
514
515/// Returns the number of bytes written by the endianness check.
516pub(crate) fn write_endianness_check_len() -> usize {
517    size_of::<u32>()
518}
519
520/// Reads a version number from the beginning of the given slice and confirms
521/// that is matches the expected version number given. If the slice is too
522/// small or if the version numbers aren't equivalent, this returns an error.
523///
524/// Upon success, the total number of bytes read is returned.
525///
526/// N.B. Currently, we require that the version number is exactly equivalent.
527/// In the future, if we bump the version number without a semver bump, then
528/// we'll need to relax this a bit and support older versions.
529pub(crate) fn read_version(
530    slice: &[u8],
531    expected_version: u32,
532) -> Result<usize, DeserializeError> {
533    let (n, nr) = try_read_u32(slice, "version")?;
534    assert_eq!(nr, write_version_len());
535    if n != expected_version {
536        return Err(DeserializeError::version_mismatch(expected_version, n));
537    }
538    Ok(nr)
539}
540
541/// Writes the given version number to the beginning of the given slice.
542///
543/// This is useful for writing into the header of a serialized object. It can
544/// be read during deserialization as a sanity check to ensure that the library
545/// code supports the format of the serialized object.
546///
547/// Upon success, the total number of bytes written is returned.
548pub(crate) fn write_version<E: Endian>(
549    version: u32,
550    dst: &mut [u8],
551) -> Result<usize, SerializeError> {
552    let nwrite = write_version_len();
553    if dst.len() < nwrite {
554        return Err(SerializeError::buffer_too_small("version number"));
555    }
556    E::write_u32(version, dst);
557    Ok(nwrite)
558}
559
560/// Returns the number of bytes written by writing the version number.
561pub(crate) fn write_version_len() -> usize {
562    size_of::<u32>()
563}
564
565/// Reads a pattern ID from the given slice. If the slice has insufficient
566/// length, then this panics. If the deserialized integer exceeds the pattern
567/// ID limit for the current target, then this returns an error.
568///
569/// Upon success, this also returns the number of bytes read.
570pub(crate) fn read_pattern_id(
571    slice: &[u8],
572    what: &'static str,
573) -> Result<(PatternID, usize), DeserializeError> {
574    let bytes: [u8; PatternID::SIZE] =
575        slice[..PatternID::SIZE].try_into().unwrap();
576    let pid = PatternID::from_ne_bytes(bytes)
577        .map_err(|err| DeserializeError::pattern_id_error(err, what))?;
578    Ok((pid, PatternID::SIZE))
579}
580
581/// Reads a pattern ID from the given slice. If the slice has insufficient
582/// length, then this panics. Otherwise, the deserialized integer is assumed
583/// to be a valid pattern ID.
584///
585/// This also returns the number of bytes read.
586pub(crate) fn read_pattern_id_unchecked(slice: &[u8]) -> (PatternID, usize) {
587    let pid = PatternID::from_ne_bytes_unchecked(
588        slice[..PatternID::SIZE].try_into().unwrap(),
589    );
590    (pid, PatternID::SIZE)
591}
592
593/// Write the given pattern ID to the beginning of the given slice of bytes
594/// using the specified endianness. The given slice must have length at least
595/// `PatternID::SIZE`, or else this panics. Upon success, the total number of
596/// bytes written is returned.
597pub(crate) fn write_pattern_id<E: Endian>(
598    pid: PatternID,
599    dst: &mut [u8],
600) -> usize {
601    E::write_u32(pid.as_u32(), dst);
602    PatternID::SIZE
603}
604
605/// Attempts to read a state ID from the given slice. If the slice has an
606/// insufficient number of bytes or if the state ID exceeds the limit for
607/// the current target, then this returns an error.
608///
609/// Upon success, this also returns the number of bytes read.
610pub(crate) fn try_read_state_id(
611    slice: &[u8],
612    what: &'static str,
613) -> Result<(StateID, usize), DeserializeError> {
614    if slice.len() < StateID::SIZE {
615        return Err(DeserializeError::buffer_too_small(what));
616    }
617    read_state_id(slice, what)
618}
619
620/// Reads a state ID from the given slice. If the slice has insufficient
621/// length, then this panics. If the deserialized integer exceeds the state ID
622/// limit for the current target, then this returns an error.
623///
624/// Upon success, this also returns the number of bytes read.
625pub(crate) fn read_state_id(
626    slice: &[u8],
627    what: &'static str,
628) -> Result<(StateID, usize), DeserializeError> {
629    let bytes: [u8; StateID::SIZE] =
630        slice[..StateID::SIZE].try_into().unwrap();
631    let sid = StateID::from_ne_bytes(bytes)
632        .map_err(|err| DeserializeError::state_id_error(err, what))?;
633    Ok((sid, StateID::SIZE))
634}
635
636/// Reads a state ID from the given slice. If the slice has insufficient
637/// length, then this panics. Otherwise, the deserialized integer is assumed
638/// to be a valid state ID.
639///
640/// This also returns the number of bytes read.
641pub(crate) fn read_state_id_unchecked(slice: &[u8]) -> (StateID, usize) {
642    let sid = StateID::from_ne_bytes_unchecked(
643        slice[..StateID::SIZE].try_into().unwrap(),
644    );
645    (sid, StateID::SIZE)
646}
647
648/// Write the given state ID to the beginning of the given slice of bytes
649/// using the specified endianness. The given slice must have length at least
650/// `StateID::SIZE`, or else this panics. Upon success, the total number of
651/// bytes written is returned.
652pub(crate) fn write_state_id<E: Endian>(
653    sid: StateID,
654    dst: &mut [u8],
655) -> usize {
656    E::write_u32(sid.as_u32(), dst);
657    StateID::SIZE
658}
659
660/// Try to read a u16 as a usize from the beginning of the given slice in
661/// native endian format. If the slice has fewer than 2 bytes or if the
662/// deserialized number cannot be represented by usize, then this returns an
663/// error. The error message will include the `what` description of what is
664/// being deserialized, for better error messages. `what` should be a noun in
665/// singular form.
666///
667/// Upon success, this also returns the number of bytes read.
668pub(crate) fn try_read_u16_as_usize(
669    slice: &[u8],
670    what: &'static str,
671) -> Result<(usize, usize), DeserializeError> {
672    try_read_u16(slice, what).and_then(|(n, nr)| {
673        usize::try_from(n)
674            .map(|n| (n, nr))
675            .map_err(|_| DeserializeError::invalid_usize(what))
676    })
677}
678
679/// Try to read a u32 as a usize from the beginning of the given slice in
680/// native endian format. If the slice has fewer than 4 bytes or if the
681/// deserialized number cannot be represented by usize, then this returns an
682/// error. The error message will include the `what` description of what is
683/// being deserialized, for better error messages. `what` should be a noun in
684/// singular form.
685///
686/// Upon success, this also returns the number of bytes read.
687pub(crate) fn try_read_u32_as_usize(
688    slice: &[u8],
689    what: &'static str,
690) -> Result<(usize, usize), DeserializeError> {
691    try_read_u32(slice, what).and_then(|(n, nr)| {
692        usize::try_from(n)
693            .map(|n| (n, nr))
694            .map_err(|_| DeserializeError::invalid_usize(what))
695    })
696}
697
698/// Try to read a u16 from the beginning of the given slice in native endian
699/// format. If the slice has fewer than 2 bytes, then this returns an error.
700/// The error message will include the `what` description of what is being
701/// deserialized, for better error messages. `what` should be a noun in
702/// singular form.
703///
704/// Upon success, this also returns the number of bytes read.
705pub(crate) fn try_read_u16(
706    slice: &[u8],
707    what: &'static str,
708) -> Result<(u16, usize), DeserializeError> {
709    check_slice_len(slice, size_of::<u16>(), what)?;
710    Ok((read_u16(slice), size_of::<u16>()))
711}
712
713/// Try to read a u32 from the beginning of the given slice in native endian
714/// format. If the slice has fewer than 4 bytes, then this returns an error.
715/// The error message will include the `what` description of what is being
716/// deserialized, for better error messages. `what` should be a noun in
717/// singular form.
718///
719/// Upon success, this also returns the number of bytes read.
720pub(crate) fn try_read_u32(
721    slice: &[u8],
722    what: &'static str,
723) -> Result<(u32, usize), DeserializeError> {
724    check_slice_len(slice, size_of::<u32>(), what)?;
725    Ok((read_u32(slice), size_of::<u32>()))
726}
727
728/// Try to read a u128 from the beginning of the given slice in native endian
729/// format. If the slice has fewer than 16 bytes, then this returns an error.
730/// The error message will include the `what` description of what is being
731/// deserialized, for better error messages. `what` should be a noun in
732/// singular form.
733///
734/// Upon success, this also returns the number of bytes read.
735pub(crate) fn try_read_u128(
736    slice: &[u8],
737    what: &'static str,
738) -> Result<(u128, usize), DeserializeError> {
739    check_slice_len(slice, size_of::<u128>(), what)?;
740    Ok((read_u128(slice), size_of::<u128>()))
741}
742
743/// Read a u16 from the beginning of the given slice in native endian format.
744/// If the slice has fewer than 2 bytes, then this panics.
745///
746/// Marked as inline to speed up sparse searching which decodes integers from
747/// its automaton at search time.
748#[cfg_attr(feature = "perf-inline", inline(always))]
749pub(crate) fn read_u16(slice: &[u8]) -> u16 {
750    let bytes: [u8; 2] = slice[..size_of::<u16>()].try_into().unwrap();
751    u16::from_ne_bytes(bytes)
752}
753
754/// Read a u32 from the beginning of the given slice in native endian format.
755/// If the slice has fewer than 4 bytes, then this panics.
756///
757/// Marked as inline to speed up sparse searching which decodes integers from
758/// its automaton at search time.
759#[cfg_attr(feature = "perf-inline", inline(always))]
760pub(crate) fn read_u32(slice: &[u8]) -> u32 {
761    let bytes: [u8; 4] = slice[..size_of::<u32>()].try_into().unwrap();
762    u32::from_ne_bytes(bytes)
763}
764
765/// Read a u128 from the beginning of the given slice in native endian format.
766/// If the slice has fewer than 16 bytes, then this panics.
767pub(crate) fn read_u128(slice: &[u8]) -> u128 {
768    let bytes: [u8; 16] = slice[..size_of::<u128>()].try_into().unwrap();
769    u128::from_ne_bytes(bytes)
770}
771
772/// Checks that the given slice has some minimal length. If it's smaller than
773/// the bound given, then a "buffer too small" error is returned with `what`
774/// describing what the buffer represents.
775pub(crate) fn check_slice_len<T>(
776    slice: &[T],
777    at_least_len: usize,
778    what: &'static str,
779) -> Result<(), DeserializeError> {
780    if slice.len() < at_least_len {
781        return Err(DeserializeError::buffer_too_small(what));
782    }
783    Ok(())
784}
785
786/// Multiply the given numbers, and on overflow, return an error that includes
787/// 'what' in the error message.
788///
789/// This is useful when doing arithmetic with untrusted data.
790pub(crate) fn mul(
791    a: usize,
792    b: usize,
793    what: &'static str,
794) -> Result<usize, DeserializeError> {
795    match a.checked_mul(b) {
796        Some(c) => Ok(c),
797        None => Err(DeserializeError::arithmetic_overflow(what)),
798    }
799}
800
801/// Add the given numbers, and on overflow, return an error that includes
802/// 'what' in the error message.
803///
804/// This is useful when doing arithmetic with untrusted data.
805pub(crate) fn add(
806    a: usize,
807    b: usize,
808    what: &'static str,
809) -> Result<usize, DeserializeError> {
810    match a.checked_add(b) {
811        Some(c) => Ok(c),
812        None => Err(DeserializeError::arithmetic_overflow(what)),
813    }
814}
815
816/// Shift `a` left by `b`, and on overflow, return an error that includes
817/// 'what' in the error message.
818///
819/// This is useful when doing arithmetic with untrusted data.
820pub(crate) fn shl(
821    a: usize,
822    b: usize,
823    what: &'static str,
824) -> Result<usize, DeserializeError> {
825    let amount = u32::try_from(b)
826        .map_err(|_| DeserializeError::arithmetic_overflow(what))?;
827    match a.checked_shl(amount) {
828        Some(c) => Ok(c),
829        None => Err(DeserializeError::arithmetic_overflow(what)),
830    }
831}
832
833/// Returns the number of additional bytes required to add to the given length
834/// in order to make the total length a multiple of 4. The return value is
835/// always less than 4.
836pub(crate) fn padding_len(non_padding_len: usize) -> usize {
837    (4 - (non_padding_len & 0b11)) & 0b11
838}
839
840/// A simple trait for writing code generic over endianness.
841///
842/// This is similar to what byteorder provides, but we only need a very small
843/// subset.
844pub(crate) trait Endian {
845    /// Writes a u16 to the given destination buffer in a particular
846    /// endianness. If the destination buffer has a length smaller than 2, then
847    /// this panics.
848    fn write_u16(n: u16, dst: &mut [u8]);
849
850    /// Writes a u32 to the given destination buffer in a particular
851    /// endianness. If the destination buffer has a length smaller than 4, then
852    /// this panics.
853    fn write_u32(n: u32, dst: &mut [u8]);
854
855    /// Writes a u128 to the given destination buffer in a particular
856    /// endianness. If the destination buffer has a length smaller than 16,
857    /// then this panics.
858    fn write_u128(n: u128, dst: &mut [u8]);
859}
860
861/// Little endian writing.
862pub(crate) enum LE {}
863/// Big endian writing.
864pub(crate) enum BE {}
865
866#[cfg(target_endian = "little")]
867pub(crate) type NE = LE;
868#[cfg(target_endian = "big")]
869pub(crate) type NE = BE;
870
871impl Endian for LE {
872    fn write_u16(n: u16, dst: &mut [u8]) {
873        dst[..2].copy_from_slice(&n.to_le_bytes());
874    }
875
876    fn write_u32(n: u32, dst: &mut [u8]) {
877        dst[..4].copy_from_slice(&n.to_le_bytes());
878    }
879
880    fn write_u128(n: u128, dst: &mut [u8]) {
881        dst[..16].copy_from_slice(&n.to_le_bytes());
882    }
883}
884
885impl Endian for BE {
886    fn write_u16(n: u16, dst: &mut [u8]) {
887        dst[..2].copy_from_slice(&n.to_be_bytes());
888    }
889
890    fn write_u32(n: u32, dst: &mut [u8]) {
891        dst[..4].copy_from_slice(&n.to_be_bytes());
892    }
893
894    fn write_u128(n: u128, dst: &mut [u8]) {
895        dst[..16].copy_from_slice(&n.to_be_bytes());
896    }
897}
898
899#[cfg(all(test, feature = "alloc"))]
900mod tests {
901    use super::*;
902
903    #[test]
904    fn labels() {
905        let mut buf = [0; 1024];
906
907        let nwrite = write_label("fooba", &mut buf).unwrap();
908        assert_eq!(nwrite, 8);
909        assert_eq!(&buf[..nwrite], b"fooba\x00\x00\x00");
910
911        let nread = read_label(&buf, "fooba").unwrap();
912        assert_eq!(nread, 8);
913    }
914
915    #[test]
916    #[should_panic]
917    fn bad_label_interior_nul() {
918        // interior NULs are not allowed
919        write_label("foo\x00bar", &mut [0; 1024]).unwrap();
920    }
921
922    #[test]
923    fn bad_label_almost_too_long() {
924        // ok
925        write_label(&"z".repeat(255), &mut [0; 1024]).unwrap();
926    }
927
928    #[test]
929    #[should_panic]
930    fn bad_label_too_long() {
931        // labels longer than 255 bytes are banned
932        write_label(&"z".repeat(256), &mut [0; 1024]).unwrap();
933    }
934
935    #[test]
936    fn padding() {
937        assert_eq!(0, padding_len(8));
938        assert_eq!(3, padding_len(9));
939        assert_eq!(2, padding_len(10));
940        assert_eq!(1, padding_len(11));
941        assert_eq!(0, padding_len(12));
942        assert_eq!(3, padding_len(13));
943        assert_eq!(2, padding_len(14));
944        assert_eq!(1, padding_len(15));
945        assert_eq!(0, padding_len(16));
946    }
947}