regex_automata/dfa/
dense.rs

1/*!
2Types and routines specific to dense DFAs.
3
4This module is the home of [`dense::DFA`](DFA).
5
6This module also contains a [`dense::Builder`](Builder) and a
7[`dense::Config`](Config) for building and configuring a dense DFA.
8*/
9
10#[cfg(feature = "dfa-build")]
11use core::cmp;
12use core::{fmt, iter, mem::size_of, slice};
13
14#[cfg(feature = "dfa-build")]
15use alloc::{
16    collections::{BTreeMap, BTreeSet},
17    vec,
18    vec::Vec,
19};
20
21#[cfg(feature = "dfa-build")]
22use crate::{
23    dfa::{
24        accel::Accel, determinize, minimize::Minimizer, remapper::Remapper,
25        sparse,
26    },
27    nfa::thompson,
28    util::{look::LookMatcher, search::MatchKind},
29};
30use crate::{
31    dfa::{
32        accel::Accels,
33        automaton::{fmt_state_indicator, Automaton, StartError},
34        special::Special,
35        start::StartKind,
36        DEAD,
37    },
38    util::{
39        alphabet::{self, ByteClasses, ByteSet},
40        int::{Pointer, Usize},
41        prefilter::Prefilter,
42        primitives::{PatternID, StateID},
43        search::Anchored,
44        start::{self, Start, StartByteMap},
45        wire::{self, DeserializeError, Endian, SerializeError},
46    },
47};
48
49/// The label that is pre-pended to a serialized DFA.
50const LABEL: &str = "rust-regex-automata-dfa-dense";
51
52/// The format version of dense regexes. This version gets incremented when a
53/// change occurs. A change may not necessarily be a breaking change, but the
54/// version does permit good error messages in the case where a breaking change
55/// is made.
56const VERSION: u32 = 2;
57
58/// The configuration used for compiling a dense DFA.
59///
60/// As a convenience, [`DFA::config`] is an alias for [`Config::new`]. The
61/// advantage of the former is that it often lets you avoid importing the
62/// `Config` type directly.
63///
64/// A dense DFA configuration is a simple data object that is typically used
65/// with [`dense::Builder::configure`](self::Builder::configure).
66///
67/// The default configuration guarantees that a search will never return
68/// a "quit" error, although it is possible for a search to fail if
69/// [`Config::starts_for_each_pattern`] wasn't enabled (which it is
70/// not by default) and an [`Anchored::Pattern`] mode is requested via
71/// [`Input`](crate::Input).
72#[cfg(feature = "dfa-build")]
73#[derive(Clone, Debug, Default)]
74pub struct Config {
75    // As with other configuration types in this crate, we put all our knobs
76    // in options so that we can distinguish between "default" and "not set."
77    // This makes it possible to easily combine multiple configurations
78    // without default values overwriting explicitly specified values. See the
79    // 'overwrite' method.
80    //
81    // For docs on the fields below, see the corresponding method setters.
82    accelerate: Option<bool>,
83    pre: Option<Option<Prefilter>>,
84    minimize: Option<bool>,
85    match_kind: Option<MatchKind>,
86    start_kind: Option<StartKind>,
87    starts_for_each_pattern: Option<bool>,
88    byte_classes: Option<bool>,
89    unicode_word_boundary: Option<bool>,
90    quitset: Option<ByteSet>,
91    specialize_start_states: Option<bool>,
92    dfa_size_limit: Option<Option<usize>>,
93    determinize_size_limit: Option<Option<usize>>,
94}
95
96#[cfg(feature = "dfa-build")]
97impl Config {
98    /// Return a new default dense DFA compiler configuration.
99    pub fn new() -> Config {
100        Config::default()
101    }
102
103    /// Enable state acceleration.
104    ///
105    /// When enabled, DFA construction will analyze each state to determine
106    /// whether it is eligible for simple acceleration. Acceleration typically
107    /// occurs when most of a state's transitions loop back to itself, leaving
108    /// only a select few bytes that will exit the state. When this occurs,
109    /// other routines like `memchr` can be used to look for those bytes which
110    /// may be much faster than traversing the DFA.
111    ///
112    /// Callers may elect to disable this if consistent performance is more
113    /// desirable than variable performance. Namely, acceleration can sometimes
114    /// make searching slower than it otherwise would be if the transitions
115    /// that leave accelerated states are traversed frequently.
116    ///
117    /// See [`Automaton::accelerator`] for an example.
118    ///
119    /// This is enabled by default.
120    pub fn accelerate(mut self, yes: bool) -> Config {
121        self.accelerate = Some(yes);
122        self
123    }
124
125    /// Set a prefilter to be used whenever a start state is entered.
126    ///
127    /// A [`Prefilter`] in this context is meant to accelerate searches by
128    /// looking for literal prefixes that every match for the corresponding
129    /// pattern (or patterns) must start with. Once a prefilter produces a
130    /// match, the underlying search routine continues on to try and confirm
131    /// the match.
132    ///
133    /// Be warned that setting a prefilter does not guarantee that the search
134    /// will be faster. While it's usually a good bet, if the prefilter
135    /// produces a lot of false positive candidates (i.e., positions matched
136    /// by the prefilter but not by the regex), then the overall result can
137    /// be slower than if you had just executed the regex engine without any
138    /// prefilters.
139    ///
140    /// Note that unless [`Config::specialize_start_states`] has been
141    /// explicitly set, then setting this will also enable (when `pre` is
142    /// `Some`) or disable (when `pre` is `None`) start state specialization.
143    /// This occurs because without start state specialization, a prefilter
144    /// is likely to be less effective. And without a prefilter, start state
145    /// specialization is usually pointless.
146    ///
147    /// **WARNING:** Note that prefilters are not preserved as part of
148    /// serialization. Serializing a DFA will drop its prefilter.
149    ///
150    /// By default no prefilter is set.
151    ///
152    /// # Example
153    ///
154    /// ```
155    /// use regex_automata::{
156    ///     dfa::{dense::DFA, Automaton},
157    ///     util::prefilter::Prefilter,
158    ///     Input, HalfMatch, MatchKind,
159    /// };
160    ///
161    /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "bar"]);
162    /// let re = DFA::builder()
163    ///     .configure(DFA::config().prefilter(pre))
164    ///     .build(r"(foo|bar)[a-z]+")?;
165    /// let input = Input::new("foo1 barfox bar");
166    /// assert_eq!(
167    ///     Some(HalfMatch::must(0, 11)),
168    ///     re.try_search_fwd(&input)?,
169    /// );
170    ///
171    /// # Ok::<(), Box<dyn std::error::Error>>(())
172    /// ```
173    ///
174    /// Be warned though that an incorrect prefilter can lead to incorrect
175    /// results!
176    ///
177    /// ```
178    /// use regex_automata::{
179    ///     dfa::{dense::DFA, Automaton},
180    ///     util::prefilter::Prefilter,
181    ///     Input, HalfMatch, MatchKind,
182    /// };
183    ///
184    /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "car"]);
185    /// let re = DFA::builder()
186    ///     .configure(DFA::config().prefilter(pre))
187    ///     .build(r"(foo|bar)[a-z]+")?;
188    /// let input = Input::new("foo1 barfox bar");
189    /// assert_eq!(
190    ///     // No match reported even though there clearly is one!
191    ///     None,
192    ///     re.try_search_fwd(&input)?,
193    /// );
194    ///
195    /// # Ok::<(), Box<dyn std::error::Error>>(())
196    /// ```
197    pub fn prefilter(mut self, pre: Option<Prefilter>) -> Config {
198        self.pre = Some(pre);
199        if self.specialize_start_states.is_none() {
200            self.specialize_start_states =
201                Some(self.get_prefilter().is_some());
202        }
203        self
204    }
205
206    /// Minimize the DFA.
207    ///
208    /// When enabled, the DFA built will be minimized such that it is as small
209    /// as possible.
210    ///
211    /// Whether one enables minimization or not depends on the types of costs
212    /// you're willing to pay and how much you care about its benefits. In
213    /// particular, minimization has worst case `O(n*k*logn)` time and `O(k*n)`
214    /// space, where `n` is the number of DFA states and `k` is the alphabet
215    /// size. In practice, minimization can be quite costly in terms of both
216    /// space and time, so it should only be done if you're willing to wait
217    /// longer to produce a DFA. In general, you might want a minimal DFA in
218    /// the following circumstances:
219    ///
220    /// 1. You would like to optimize for the size of the automaton. This can
221    ///    manifest in one of two ways. Firstly, if you're converting the
222    ///    DFA into Rust code (or a table embedded in the code), then a minimal
223    ///    DFA will translate into a corresponding reduction in code  size, and
224    ///    thus, also the final compiled binary size. Secondly, if you are
225    ///    building many DFAs and putting them on the heap, you'll be able to
226    ///    fit more if they are smaller. Note though that building a minimal
227    ///    DFA itself requires additional space; you only realize the space
228    ///    savings once the minimal DFA is constructed (at which point, the
229    ///    space used for minimization is freed).
230    /// 2. You've observed that a smaller DFA results in faster match
231    ///    performance. Naively, this isn't guaranteed since there is no
232    ///    inherent difference between matching with a bigger-than-minimal
233    ///    DFA and a minimal DFA. However, a smaller DFA may make use of your
234    ///    CPU's cache more efficiently.
235    /// 3. You are trying to establish an equivalence between regular
236    ///    languages. The standard method for this is to build a minimal DFA
237    ///    for each language and then compare them. If the DFAs are equivalent
238    ///    (up to state renaming), then the languages are equivalent.
239    ///
240    /// Typically, minimization only makes sense as an offline process. That
241    /// is, one might minimize a DFA before serializing it to persistent
242    /// storage. In practical terms, minimization can take around an order of
243    /// magnitude more time than compiling the initial DFA via determinization.
244    ///
245    /// This option is disabled by default.
246    pub fn minimize(mut self, yes: bool) -> Config {
247        self.minimize = Some(yes);
248        self
249    }
250
251    /// Set the desired match semantics.
252    ///
253    /// The default is [`MatchKind::LeftmostFirst`], which corresponds to the
254    /// match semantics of Perl-like regex engines. That is, when multiple
255    /// patterns would match at the same leftmost position, the pattern that
256    /// appears first in the concrete syntax is chosen.
257    ///
258    /// Currently, the only other kind of match semantics supported is
259    /// [`MatchKind::All`]. This corresponds to classical DFA construction
260    /// where all possible matches are added to the DFA.
261    ///
262    /// Typically, `All` is used when one wants to execute an overlapping
263    /// search and `LeftmostFirst` otherwise. In particular, it rarely makes
264    /// sense to use `All` with the various "leftmost" find routines, since the
265    /// leftmost routines depend on the `LeftmostFirst` automata construction
266    /// strategy. Specifically, `LeftmostFirst` adds dead states to the DFA
267    /// as a way to terminate the search and report a match. `LeftmostFirst`
268    /// also supports non-greedy matches using this strategy where as `All`
269    /// does not.
270    ///
271    /// # Example: overlapping search
272    ///
273    /// This example shows the typical use of `MatchKind::All`, which is to
274    /// report overlapping matches.
275    ///
276    /// ```
277    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
278    /// use regex_automata::{
279    ///     dfa::{Automaton, OverlappingState, dense},
280    ///     HalfMatch, Input, MatchKind,
281    /// };
282    ///
283    /// let dfa = dense::Builder::new()
284    ///     .configure(dense::Config::new().match_kind(MatchKind::All))
285    ///     .build_many(&[r"\w+$", r"\S+$"])?;
286    /// let input = Input::new("@foo");
287    /// let mut state = OverlappingState::start();
288    ///
289    /// let expected = Some(HalfMatch::must(1, 4));
290    /// dfa.try_search_overlapping_fwd(&input, &mut state)?;
291    /// assert_eq!(expected, state.get_match());
292    ///
293    /// // The first pattern also matches at the same position, so re-running
294    /// // the search will yield another match. Notice also that the first
295    /// // pattern is returned after the second. This is because the second
296    /// // pattern begins its match before the first, is therefore an earlier
297    /// // match and is thus reported first.
298    /// let expected = Some(HalfMatch::must(0, 4));
299    /// dfa.try_search_overlapping_fwd(&input, &mut state)?;
300    /// assert_eq!(expected, state.get_match());
301    ///
302    /// # Ok::<(), Box<dyn std::error::Error>>(())
303    /// ```
304    ///
305    /// # Example: reverse automaton to find start of match
306    ///
307    /// Another example for using `MatchKind::All` is for constructing a
308    /// reverse automaton to find the start of a match. `All` semantics are
309    /// used for this in order to find the longest possible match, which
310    /// corresponds to the leftmost starting position.
311    ///
312    /// Note that if you need the starting position then
313    /// [`dfa::regex::Regex`](crate::dfa::regex::Regex) will handle this for
314    /// you, so it's usually not necessary to do this yourself.
315    ///
316    /// ```
317    /// use regex_automata::{
318    ///     dfa::{dense, Automaton, StartKind},
319    ///     nfa::thompson::NFA,
320    ///     Anchored, HalfMatch, Input, MatchKind,
321    /// };
322    ///
323    /// let haystack = "123foobar456".as_bytes();
324    /// let pattern = r"[a-z]+r";
325    ///
326    /// let dfa_fwd = dense::DFA::new(pattern)?;
327    /// let dfa_rev = dense::Builder::new()
328    ///     .thompson(NFA::config().reverse(true))
329    ///     .configure(dense::Config::new()
330    ///         // This isn't strictly necessary since both anchored and
331    ///         // unanchored searches are supported by default. But since
332    ///         // finding the start-of-match only requires anchored searches,
333    ///         // we can get rid of the unanchored configuration and possibly
334    ///         // slim down our DFA considerably.
335    ///         .start_kind(StartKind::Anchored)
336    ///         .match_kind(MatchKind::All)
337    ///     )
338    ///     .build(pattern)?;
339    /// let expected_fwd = HalfMatch::must(0, 9);
340    /// let expected_rev = HalfMatch::must(0, 3);
341    /// let got_fwd = dfa_fwd.try_search_fwd(&Input::new(haystack))?.unwrap();
342    /// // Here we don't specify the pattern to search for since there's only
343    /// // one pattern and we're doing a leftmost search. But if this were an
344    /// // overlapping search, you'd need to specify the pattern that matched
345    /// // in the forward direction. (Otherwise, you might wind up finding the
346    /// // starting position of a match of some other pattern.) That in turn
347    /// // requires building the reverse automaton with starts_for_each_pattern
348    /// // enabled. Indeed, this is what Regex does internally.
349    /// let input = Input::new(haystack)
350    ///     .range(..got_fwd.offset())
351    ///     .anchored(Anchored::Yes);
352    /// let got_rev = dfa_rev.try_search_rev(&input)?.unwrap();
353    /// assert_eq!(expected_fwd, got_fwd);
354    /// assert_eq!(expected_rev, got_rev);
355    ///
356    /// # Ok::<(), Box<dyn std::error::Error>>(())
357    /// ```
358    pub fn match_kind(mut self, kind: MatchKind) -> Config {
359        self.match_kind = Some(kind);
360        self
361    }
362
363    /// The type of starting state configuration to use for a DFA.
364    ///
365    /// By default, the starting state configuration is [`StartKind::Both`].
366    ///
367    /// # Example
368    ///
369    /// ```
370    /// use regex_automata::{
371    ///     dfa::{dense::DFA, Automaton, StartKind},
372    ///     Anchored, HalfMatch, Input,
373    /// };
374    ///
375    /// let haystack = "quux foo123";
376    /// let expected = HalfMatch::must(0, 11);
377    ///
378    /// // By default, DFAs support both anchored and unanchored searches.
379    /// let dfa = DFA::new(r"[0-9]+")?;
380    /// let input = Input::new(haystack);
381    /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
382    ///
383    /// // But if we only need anchored searches, then we can build a DFA
384    /// // that only supports anchored searches. This leads to a smaller DFA
385    /// // (potentially significantly smaller in some cases), but a DFA that
386    /// // will panic if you try to use it with an unanchored search.
387    /// let dfa = DFA::builder()
388    ///     .configure(DFA::config().start_kind(StartKind::Anchored))
389    ///     .build(r"[0-9]+")?;
390    /// let input = Input::new(haystack)
391    ///     .range(8..)
392    ///     .anchored(Anchored::Yes);
393    /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
394    ///
395    /// # Ok::<(), Box<dyn std::error::Error>>(())
396    /// ```
397    pub fn start_kind(mut self, kind: StartKind) -> Config {
398        self.start_kind = Some(kind);
399        self
400    }
401
402    /// Whether to compile a separate start state for each pattern in the
403    /// automaton.
404    ///
405    /// When enabled, a separate **anchored** start state is added for each
406    /// pattern in the DFA. When this start state is used, then the DFA will
407    /// only search for matches for the pattern specified, even if there are
408    /// other patterns in the DFA.
409    ///
410    /// The main downside of this option is that it can potentially increase
411    /// the size of the DFA and/or increase the time it takes to build the DFA.
412    ///
413    /// There are a few reasons one might want to enable this (it's disabled
414    /// by default):
415    ///
416    /// 1. When looking for the start of an overlapping match (using a
417    /// reverse DFA), doing it correctly requires starting the reverse search
418    /// using the starting state of the pattern that matched in the forward
419    /// direction. Indeed, when building a [`Regex`](crate::dfa::regex::Regex),
420    /// it will automatically enable this option when building the reverse DFA
421    /// internally.
422    /// 2. When you want to use a DFA with multiple patterns to both search
423    /// for matches of any pattern or to search for anchored matches of one
424    /// particular pattern while using the same DFA. (Otherwise, you would need
425    /// to compile a new DFA for each pattern.)
426    /// 3. Since the start states added for each pattern are anchored, if you
427    /// compile an unanchored DFA with one pattern while also enabling this
428    /// option, then you can use the same DFA to perform anchored or unanchored
429    /// searches. The latter you get with the standard search APIs. The former
430    /// you get from the various `_at` search methods that allow you specify a
431    /// pattern ID to search for.
432    ///
433    /// By default this is disabled.
434    ///
435    /// # Example
436    ///
437    /// This example shows how to use this option to permit the same DFA to
438    /// run both anchored and unanchored searches for a single pattern.
439    ///
440    /// ```
441    /// use regex_automata::{
442    ///     dfa::{dense, Automaton},
443    ///     Anchored, HalfMatch, PatternID, Input,
444    /// };
445    ///
446    /// let dfa = dense::Builder::new()
447    ///     .configure(dense::Config::new().starts_for_each_pattern(true))
448    ///     .build(r"foo[0-9]+")?;
449    /// let haystack = "quux foo123";
450    ///
451    /// // Here's a normal unanchored search. Notice that we use 'None' for the
452    /// // pattern ID. Since the DFA was built as an unanchored machine, it
453    /// // use its default unanchored starting state.
454    /// let expected = HalfMatch::must(0, 11);
455    /// let input = Input::new(haystack);
456    /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
457    /// // But now if we explicitly specify the pattern to search ('0' being
458    /// // the only pattern in the DFA), then it will use the starting state
459    /// // for that specific pattern which is always anchored. Since the
460    /// // pattern doesn't have a match at the beginning of the haystack, we
461    /// // find nothing.
462    /// let input = Input::new(haystack)
463    ///     .anchored(Anchored::Pattern(PatternID::must(0)));
464    /// assert_eq!(None, dfa.try_search_fwd(&input)?);
465    /// // And finally, an anchored search is not the same as putting a '^' at
466    /// // beginning of the pattern. An anchored search can only match at the
467    /// // beginning of the *search*, which we can change:
468    /// let input = Input::new(haystack)
469    ///     .anchored(Anchored::Pattern(PatternID::must(0)))
470    ///     .range(5..);
471    /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
472    ///
473    /// # Ok::<(), Box<dyn std::error::Error>>(())
474    /// ```
475    pub fn starts_for_each_pattern(mut self, yes: bool) -> Config {
476        self.starts_for_each_pattern = Some(yes);
477        self
478    }
479
480    /// Whether to attempt to shrink the size of the DFA's alphabet or not.
481    ///
482    /// This option is enabled by default and should never be disabled unless
483    /// one is debugging a generated DFA.
484    ///
485    /// When enabled, the DFA will use a map from all possible bytes to their
486    /// corresponding equivalence class. Each equivalence class represents a
487    /// set of bytes that does not discriminate between a match and a non-match
488    /// in the DFA. For example, the pattern `[ab]+` has at least two
489    /// equivalence classes: a set containing `a` and `b` and a set containing
490    /// every byte except for `a` and `b`. `a` and `b` are in the same
491    /// equivalence class because they never discriminate between a match and a
492    /// non-match.
493    ///
494    /// The advantage of this map is that the size of the transition table
495    /// can be reduced drastically from `#states * 256 * sizeof(StateID)` to
496    /// `#states * k * sizeof(StateID)` where `k` is the number of equivalence
497    /// classes (rounded up to the nearest power of 2). As a result, total
498    /// space usage can decrease substantially. Moreover, since a smaller
499    /// alphabet is used, DFA compilation becomes faster as well.
500    ///
501    /// **WARNING:** This is only useful for debugging DFAs. Disabling this
502    /// does not yield any speed advantages. Namely, even when this is
503    /// disabled, a byte class map is still used while searching. The only
504    /// difference is that every byte will be forced into its own distinct
505    /// equivalence class. This is useful for debugging the actual generated
506    /// transitions because it lets one see the transitions defined on actual
507    /// bytes instead of the equivalence classes.
508    pub fn byte_classes(mut self, yes: bool) -> Config {
509        self.byte_classes = Some(yes);
510        self
511    }
512
513    /// Heuristically enable Unicode word boundaries.
514    ///
515    /// When set, this will attempt to implement Unicode word boundaries as if
516    /// they were ASCII word boundaries. This only works when the search input
517    /// is ASCII only. If a non-ASCII byte is observed while searching, then a
518    /// [`MatchError::quit`](crate::MatchError::quit) error is returned.
519    ///
520    /// A possible alternative to enabling this option is to simply use an
521    /// ASCII word boundary, e.g., via `(?-u:\b)`. The main reason to use this
522    /// option is if you absolutely need Unicode support. This option lets one
523    /// use a fast search implementation (a DFA) for some potentially very
524    /// common cases, while providing the option to fall back to some other
525    /// regex engine to handle the general case when an error is returned.
526    ///
527    /// If the pattern provided has no Unicode word boundary in it, then this
528    /// option has no effect. (That is, quitting on a non-ASCII byte only
529    /// occurs when this option is enabled _and_ a Unicode word boundary is
530    /// present in the pattern.)
531    ///
532    /// This is almost equivalent to setting all non-ASCII bytes to be quit
533    /// bytes. The only difference is that this will cause non-ASCII bytes to
534    /// be quit bytes _only_ when a Unicode word boundary is present in the
535    /// pattern.
536    ///
537    /// When enabling this option, callers _must_ be prepared to handle
538    /// a [`MatchError`](crate::MatchError) error during search.
539    /// When using a [`Regex`](crate::dfa::regex::Regex), this corresponds
540    /// to using the `try_` suite of methods. Alternatively, if
541    /// callers can guarantee that their input is ASCII only, then a
542    /// [`MatchError::quit`](crate::MatchError::quit) error will never be
543    /// returned while searching.
544    ///
545    /// This is disabled by default.
546    ///
547    /// # Example
548    ///
549    /// This example shows how to heuristically enable Unicode word boundaries
550    /// in a pattern. It also shows what happens when a search comes across a
551    /// non-ASCII byte.
552    ///
553    /// ```
554    /// use regex_automata::{
555    ///     dfa::{Automaton, dense},
556    ///     HalfMatch, Input, MatchError,
557    /// };
558    ///
559    /// let dfa = dense::Builder::new()
560    ///     .configure(dense::Config::new().unicode_word_boundary(true))
561    ///     .build(r"\b[0-9]+\b")?;
562    ///
563    /// // The match occurs before the search ever observes the snowman
564    /// // character, so no error occurs.
565    /// let haystack = "foo 123  ☃".as_bytes();
566    /// let expected = Some(HalfMatch::must(0, 7));
567    /// let got = dfa.try_search_fwd(&Input::new(haystack))?;
568    /// assert_eq!(expected, got);
569    ///
570    /// // Notice that this search fails, even though the snowman character
571    /// // occurs after the ending match offset. This is because search
572    /// // routines read one byte past the end of the search to account for
573    /// // look-around, and indeed, this is required here to determine whether
574    /// // the trailing \b matches.
575    /// let haystack = "foo 123 ☃".as_bytes();
576    /// let expected = MatchError::quit(0xE2, 8);
577    /// let got = dfa.try_search_fwd(&Input::new(haystack));
578    /// assert_eq!(Err(expected), got);
579    ///
580    /// // Another example is executing a search where the span of the haystack
581    /// // we specify is all ASCII, but there is non-ASCII just before it. This
582    /// // correctly also reports an error.
583    /// let input = Input::new("β123").range(2..);
584    /// let expected = MatchError::quit(0xB2, 1);
585    /// let got = dfa.try_search_fwd(&input);
586    /// assert_eq!(Err(expected), got);
587    ///
588    /// // And similarly for the trailing word boundary.
589    /// let input = Input::new("123β").range(..3);
590    /// let expected = MatchError::quit(0xCE, 3);
591    /// let got = dfa.try_search_fwd(&input);
592    /// assert_eq!(Err(expected), got);
593    ///
594    /// # Ok::<(), Box<dyn std::error::Error>>(())
595    /// ```
596    pub fn unicode_word_boundary(mut self, yes: bool) -> Config {
597        // We have a separate option for this instead of just setting the
598        // appropriate quit bytes here because we don't want to set quit bytes
599        // for every regex. We only want to set them when the regex contains a
600        // Unicode word boundary.
601        self.unicode_word_boundary = Some(yes);
602        self
603    }
604
605    /// Add a "quit" byte to the DFA.
606    ///
607    /// When a quit byte is seen during search time, then search will return
608    /// a [`MatchError::quit`](crate::MatchError::quit) error indicating the
609    /// offset at which the search stopped.
610    ///
611    /// A quit byte will always overrule any other aspects of a regex. For
612    /// example, if the `x` byte is added as a quit byte and the regex `\w` is
613    /// used, then observing `x` will cause the search to quit immediately
614    /// despite the fact that `x` is in the `\w` class.
615    ///
616    /// This mechanism is primarily useful for heuristically enabling certain
617    /// features like Unicode word boundaries in a DFA. Namely, if the input
618    /// to search is ASCII, then a Unicode word boundary can be implemented
619    /// via an ASCII word boundary with no change in semantics. Thus, a DFA
620    /// can attempt to match a Unicode word boundary but give up as soon as it
621    /// observes a non-ASCII byte. Indeed, if callers set all non-ASCII bytes
622    /// to be quit bytes, then Unicode word boundaries will be permitted when
623    /// building DFAs. Of course, callers should enable
624    /// [`Config::unicode_word_boundary`] if they want this behavior instead.
625    /// (The advantage being that non-ASCII quit bytes will only be added if a
626    /// Unicode word boundary is in the pattern.)
627    ///
628    /// When enabling this option, callers _must_ be prepared to handle a
629    /// [`MatchError`](crate::MatchError) error during search. When using a
630    /// [`Regex`](crate::dfa::regex::Regex), this corresponds to using the
631    /// `try_` suite of methods.
632    ///
633    /// By default, there are no quit bytes set.
634    ///
635    /// # Panics
636    ///
637    /// This panics if heuristic Unicode word boundaries are enabled and any
638    /// non-ASCII byte is removed from the set of quit bytes. Namely, enabling
639    /// Unicode word boundaries requires setting every non-ASCII byte to a quit
640    /// byte. So if the caller attempts to undo any of that, then this will
641    /// panic.
642    ///
643    /// # Example
644    ///
645    /// This example shows how to cause a search to terminate if it sees a
646    /// `\n` byte. This could be useful if, for example, you wanted to prevent
647    /// a user supplied pattern from matching across a line boundary.
648    ///
649    /// ```
650    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
651    /// use regex_automata::{dfa::{Automaton, dense}, Input, MatchError};
652    ///
653    /// let dfa = dense::Builder::new()
654    ///     .configure(dense::Config::new().quit(b'\n', true))
655    ///     .build(r"foo\p{any}+bar")?;
656    ///
657    /// let haystack = "foo\nbar".as_bytes();
658    /// // Normally this would produce a match, since \p{any} contains '\n'.
659    /// // But since we instructed the automaton to enter a quit state if a
660    /// // '\n' is observed, this produces a match error instead.
661    /// let expected = MatchError::quit(b'\n', 3);
662    /// let got = dfa.try_search_fwd(&Input::new(haystack)).unwrap_err();
663    /// assert_eq!(expected, got);
664    ///
665    /// # Ok::<(), Box<dyn std::error::Error>>(())
666    /// ```
667    pub fn quit(mut self, byte: u8, yes: bool) -> Config {
668        if self.get_unicode_word_boundary() && !byte.is_ascii() && !yes {
669            panic!(
670                "cannot set non-ASCII byte to be non-quit when \
671                 Unicode word boundaries are enabled"
672            );
673        }
674        if self.quitset.is_none() {
675            self.quitset = Some(ByteSet::empty());
676        }
677        if yes {
678            self.quitset.as_mut().unwrap().add(byte);
679        } else {
680            self.quitset.as_mut().unwrap().remove(byte);
681        }
682        self
683    }
684
685    /// Enable specializing start states in the DFA.
686    ///
687    /// When start states are specialized, an implementor of a search routine
688    /// using a lazy DFA can tell when the search has entered a starting state.
689    /// When start states aren't specialized, then it is impossible to know
690    /// whether the search has entered a start state.
691    ///
692    /// Ideally, this option wouldn't need to exist and we could always
693    /// specialize start states. The problem is that start states can be quite
694    /// active. This in turn means that an efficient search routine is likely
695    /// to ping-pong between a heavily optimized hot loop that handles most
696    /// states and to a less optimized specialized handling of start states.
697    /// This causes branches to get heavily mispredicted and overall can
698    /// materially decrease throughput. Therefore, specializing start states
699    /// should only be enabled when it is needed.
700    ///
701    /// Knowing whether a search is in a start state is typically useful when a
702    /// prefilter is active for the search. A prefilter is typically only run
703    /// when in a start state and a prefilter can greatly accelerate a search.
704    /// Therefore, the possible cost of specializing start states is worth it
705    /// in this case. Otherwise, if you have no prefilter, there is likely no
706    /// reason to specialize start states.
707    ///
708    /// This is disabled by default, but note that it is automatically
709    /// enabled (or disabled) if [`Config::prefilter`] is set. Namely, unless
710    /// `specialize_start_states` has already been set, [`Config::prefilter`]
711    /// will automatically enable or disable it based on whether a prefilter
712    /// is present or not, respectively. This is done because a prefilter's
713    /// effectiveness is rooted in being executed whenever the DFA is in a
714    /// start state, and that's only possible to do when they are specialized.
715    ///
716    /// Note that it is plausibly reasonable to _disable_ this option
717    /// explicitly while _enabling_ a prefilter. In that case, a prefilter
718    /// will still be run at the beginning of a search, but never again. This
719    /// in theory could strike a good balance if you're in a situation where a
720    /// prefilter is likely to produce many false positive candidates.
721    ///
722    /// # Example
723    ///
724    /// This example shows how to enable start state specialization and then
725    /// shows how to check whether a state is a start state or not.
726    ///
727    /// ```
728    /// use regex_automata::{dfa::{Automaton, dense::DFA}, Input};
729    ///
730    /// let dfa = DFA::builder()
731    ///     .configure(DFA::config().specialize_start_states(true))
732    ///     .build(r"[a-z]+")?;
733    ///
734    /// let haystack = "123 foobar 4567".as_bytes();
735    /// let sid = dfa.start_state_forward(&Input::new(haystack))?;
736    /// // The ID returned by 'start_state_forward' will always be tagged as
737    /// // a start state when start state specialization is enabled.
738    /// assert!(dfa.is_special_state(sid));
739    /// assert!(dfa.is_start_state(sid));
740    ///
741    /// # Ok::<(), Box<dyn std::error::Error>>(())
742    /// ```
743    ///
744    /// Compare the above with the default DFA configuration where start states
745    /// are _not_ specialized. In this case, the start state is not tagged at
746    /// all:
747    ///
748    /// ```
749    /// use regex_automata::{dfa::{Automaton, dense::DFA}, Input};
750    ///
751    /// let dfa = DFA::new(r"[a-z]+")?;
752    ///
753    /// let haystack = "123 foobar 4567";
754    /// let sid = dfa.start_state_forward(&Input::new(haystack))?;
755    /// // Start states are not special in the default configuration!
756    /// assert!(!dfa.is_special_state(sid));
757    /// assert!(!dfa.is_start_state(sid));
758    ///
759    /// # Ok::<(), Box<dyn std::error::Error>>(())
760    /// ```
761    pub fn specialize_start_states(mut self, yes: bool) -> Config {
762        self.specialize_start_states = Some(yes);
763        self
764    }
765
766    /// Set a size limit on the total heap used by a DFA.
767    ///
768    /// This size limit is expressed in bytes and is applied during
769    /// determinization of an NFA into a DFA. If the DFA's heap usage, and only
770    /// the DFA, exceeds this configured limit, then determinization is stopped
771    /// and an error is returned.
772    ///
773    /// This limit does not apply to auxiliary storage used during
774    /// determinization that isn't part of the generated DFA.
775    ///
776    /// This limit is only applied during determinization. Currently, there is
777    /// no way to post-pone this check to after minimization if minimization
778    /// was enabled.
779    ///
780    /// The total limit on heap used during determinization is the sum of the
781    /// DFA and determinization size limits.
782    ///
783    /// The default is no limit.
784    ///
785    /// # Example
786    ///
787    /// This example shows a DFA that fails to build because of a configured
788    /// size limit. This particular example also serves as a cautionary tale
789    /// demonstrating just how big DFAs with large Unicode character classes
790    /// can get.
791    ///
792    /// ```
793    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
794    /// use regex_automata::{dfa::{dense, Automaton}, Input};
795    ///
796    /// // 6MB isn't enough!
797    /// dense::Builder::new()
798    ///     .configure(dense::Config::new().dfa_size_limit(Some(6_000_000)))
799    ///     .build(r"\w{20}")
800    ///     .unwrap_err();
801    ///
802    /// // ... but 7MB probably is!
803    /// // (Note that DFA sizes aren't necessarily stable between releases.)
804    /// let dfa = dense::Builder::new()
805    ///     .configure(dense::Config::new().dfa_size_limit(Some(7_000_000)))
806    ///     .build(r"\w{20}")?;
807    /// let haystack = "A".repeat(20).into_bytes();
808    /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some());
809    ///
810    /// # Ok::<(), Box<dyn std::error::Error>>(())
811    /// ```
812    ///
813    /// While one needs a little more than 6MB to represent `\w{20}`, it
814    /// turns out that you only need a little more than 6KB to represent
815    /// `(?-u:\w{20})`. So only use Unicode if you need it!
816    ///
817    /// As with [`Config::determinize_size_limit`], the size of a DFA is
818    /// influenced by other factors, such as what start state configurations
819    /// to support. For example, if you only need unanchored searches and not
820    /// anchored searches, then configuring the DFA to only support unanchored
821    /// searches can reduce its size. By default, DFAs support both unanchored
822    /// and anchored searches.
823    ///
824    /// ```
825    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
826    /// use regex_automata::{dfa::{dense, Automaton, StartKind}, Input};
827    ///
828    /// // 3MB isn't enough!
829    /// dense::Builder::new()
830    ///     .configure(dense::Config::new()
831    ///         .dfa_size_limit(Some(3_000_000))
832    ///         .start_kind(StartKind::Unanchored)
833    ///     )
834    ///     .build(r"\w{20}")
835    ///     .unwrap_err();
836    ///
837    /// // ... but 4MB probably is!
838    /// // (Note that DFA sizes aren't necessarily stable between releases.)
839    /// let dfa = dense::Builder::new()
840    ///     .configure(dense::Config::new()
841    ///         .dfa_size_limit(Some(4_000_000))
842    ///         .start_kind(StartKind::Unanchored)
843    ///     )
844    ///     .build(r"\w{20}")?;
845    /// let haystack = "A".repeat(20).into_bytes();
846    /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some());
847    ///
848    /// # Ok::<(), Box<dyn std::error::Error>>(())
849    /// ```
850    pub fn dfa_size_limit(mut self, bytes: Option<usize>) -> Config {
851        self.dfa_size_limit = Some(bytes);
852        self
853    }
854
855    /// Set a size limit on the total heap used by determinization.
856    ///
857    /// This size limit is expressed in bytes and is applied during
858    /// determinization of an NFA into a DFA. If the heap used for auxiliary
859    /// storage during determinization (memory that is not in the DFA but
860    /// necessary for building the DFA) exceeds this configured limit, then
861    /// determinization is stopped and an error is returned.
862    ///
863    /// This limit does not apply to heap used by the DFA itself.
864    ///
865    /// The total limit on heap used during determinization is the sum of the
866    /// DFA and determinization size limits.
867    ///
868    /// The default is no limit.
869    ///
870    /// # Example
871    ///
872    /// This example shows a DFA that fails to build because of a
873    /// configured size limit on the amount of heap space used by
874    /// determinization. This particular example complements the example for
875    /// [`Config::dfa_size_limit`] by demonstrating that not only does Unicode
876    /// potentially make DFAs themselves big, but it also results in more
877    /// auxiliary storage during determinization. (Although, auxiliary storage
878    /// is still not as much as the DFA itself.)
879    ///
880    /// ```
881    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
882    /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039
883    /// use regex_automata::{dfa::{dense, Automaton}, Input};
884    ///
885    /// // 700KB isn't enough!
886    /// dense::Builder::new()
887    ///     .configure(dense::Config::new()
888    ///         .determinize_size_limit(Some(700_000))
889    ///     )
890    ///     .build(r"\w{20}")
891    ///     .unwrap_err();
892    ///
893    /// // ... but 800KB probably is!
894    /// // (Note that auxiliary storage sizes aren't necessarily stable between
895    /// // releases.)
896    /// let dfa = dense::Builder::new()
897    ///     .configure(dense::Config::new()
898    ///         .determinize_size_limit(Some(800_000))
899    ///     )
900    ///     .build(r"\w{20}")?;
901    /// let haystack = "A".repeat(20).into_bytes();
902    /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some());
903    ///
904    /// # Ok::<(), Box<dyn std::error::Error>>(())
905    /// ```
906    ///
907    /// Note that some parts of the configuration on a DFA can have a
908    /// big impact on how big the DFA is, and thus, how much memory is
909    /// used. For example, the default setting for [`Config::start_kind`] is
910    /// [`StartKind::Both`]. But if you only need an anchored search, for
911    /// example, then it can be much cheaper to build a DFA that only supports
912    /// anchored searches. (Running an unanchored search with it would panic.)
913    ///
914    /// ```
915    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
916    /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039
917    /// use regex_automata::{
918    ///     dfa::{dense, Automaton, StartKind},
919    ///     Anchored, Input,
920    /// };
921    ///
922    /// // 200KB isn't enough!
923    /// dense::Builder::new()
924    ///     .configure(dense::Config::new()
925    ///         .determinize_size_limit(Some(200_000))
926    ///         .start_kind(StartKind::Anchored)
927    ///     )
928    ///     .build(r"\w{20}")
929    ///     .unwrap_err();
930    ///
931    /// // ... but 300KB probably is!
932    /// // (Note that auxiliary storage sizes aren't necessarily stable between
933    /// // releases.)
934    /// let dfa = dense::Builder::new()
935    ///     .configure(dense::Config::new()
936    ///         .determinize_size_limit(Some(300_000))
937    ///         .start_kind(StartKind::Anchored)
938    ///     )
939    ///     .build(r"\w{20}")?;
940    /// let haystack = "A".repeat(20).into_bytes();
941    /// let input = Input::new(&haystack).anchored(Anchored::Yes);
942    /// assert!(dfa.try_search_fwd(&input)?.is_some());
943    ///
944    /// # Ok::<(), Box<dyn std::error::Error>>(())
945    /// ```
946    pub fn determinize_size_limit(mut self, bytes: Option<usize>) -> Config {
947        self.determinize_size_limit = Some(bytes);
948        self
949    }
950
951    /// Returns whether this configuration has enabled simple state
952    /// acceleration.
953    pub fn get_accelerate(&self) -> bool {
954        self.accelerate.unwrap_or(true)
955    }
956
957    /// Returns the prefilter attached to this configuration, if any.
958    pub fn get_prefilter(&self) -> Option<&Prefilter> {
959        self.pre.as_ref().unwrap_or(&None).as_ref()
960    }
961
962    /// Returns whether this configuration has enabled the expensive process
963    /// of minimizing a DFA.
964    pub fn get_minimize(&self) -> bool {
965        self.minimize.unwrap_or(false)
966    }
967
968    /// Returns the match semantics set in this configuration.
969    pub fn get_match_kind(&self) -> MatchKind {
970        self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
971    }
972
973    /// Returns the starting state configuration for a DFA.
974    pub fn get_starts(&self) -> StartKind {
975        self.start_kind.unwrap_or(StartKind::Both)
976    }
977
978    /// Returns whether this configuration has enabled anchored starting states
979    /// for every pattern in the DFA.
980    pub fn get_starts_for_each_pattern(&self) -> bool {
981        self.starts_for_each_pattern.unwrap_or(false)
982    }
983
984    /// Returns whether this configuration has enabled byte classes or not.
985    /// This is typically a debugging oriented option, as disabling it confers
986    /// no speed benefit.
987    pub fn get_byte_classes(&self) -> bool {
988        self.byte_classes.unwrap_or(true)
989    }
990
991    /// Returns whether this configuration has enabled heuristic Unicode word
992    /// boundary support. When enabled, it is possible for a search to return
993    /// an error.
994    pub fn get_unicode_word_boundary(&self) -> bool {
995        self.unicode_word_boundary.unwrap_or(false)
996    }
997
998    /// Returns whether this configuration will instruct the DFA to enter a
999    /// quit state whenever the given byte is seen during a search. When at
1000    /// least one byte has this enabled, it is possible for a search to return
1001    /// an error.
1002    pub fn get_quit(&self, byte: u8) -> bool {
1003        self.quitset.map_or(false, |q| q.contains(byte))
1004    }
1005
1006    /// Returns whether this configuration will instruct the DFA to
1007    /// "specialize" start states. When enabled, the DFA will mark start states
1008    /// as "special" so that search routines using the DFA can detect when
1009    /// it's in a start state and do some kind of optimization (like run a
1010    /// prefilter).
1011    pub fn get_specialize_start_states(&self) -> bool {
1012        self.specialize_start_states.unwrap_or(false)
1013    }
1014
1015    /// Returns the DFA size limit of this configuration if one was set.
1016    /// The size limit is total number of bytes on the heap that a DFA is
1017    /// permitted to use. If the DFA exceeds this limit during construction,
1018    /// then construction is stopped and an error is returned.
1019    pub fn get_dfa_size_limit(&self) -> Option<usize> {
1020        self.dfa_size_limit.unwrap_or(None)
1021    }
1022
1023    /// Returns the determinization size limit of this configuration if one
1024    /// was set. The size limit is total number of bytes on the heap that
1025    /// determinization is permitted to use. If determinization exceeds this
1026    /// limit during construction, then construction is stopped and an error is
1027    /// returned.
1028    ///
1029    /// This is different from the DFA size limit in that this only applies to
1030    /// the auxiliary storage used during determinization. Once determinization
1031    /// is complete, this memory is freed.
1032    ///
1033    /// The limit on the total heap memory used is the sum of the DFA and
1034    /// determinization size limits.
1035    pub fn get_determinize_size_limit(&self) -> Option<usize> {
1036        self.determinize_size_limit.unwrap_or(None)
1037    }
1038
1039    /// Overwrite the default configuration such that the options in `o` are
1040    /// always used. If an option in `o` is not set, then the corresponding
1041    /// option in `self` is used. If it's not set in `self` either, then it
1042    /// remains not set.
1043    pub(crate) fn overwrite(&self, o: Config) -> Config {
1044        Config {
1045            accelerate: o.accelerate.or(self.accelerate),
1046            pre: o.pre.or_else(|| self.pre.clone()),
1047            minimize: o.minimize.or(self.minimize),
1048            match_kind: o.match_kind.or(self.match_kind),
1049            start_kind: o.start_kind.or(self.start_kind),
1050            starts_for_each_pattern: o
1051                .starts_for_each_pattern
1052                .or(self.starts_for_each_pattern),
1053            byte_classes: o.byte_classes.or(self.byte_classes),
1054            unicode_word_boundary: o
1055                .unicode_word_boundary
1056                .or(self.unicode_word_boundary),
1057            quitset: o.quitset.or(self.quitset),
1058            specialize_start_states: o
1059                .specialize_start_states
1060                .or(self.specialize_start_states),
1061            dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit),
1062            determinize_size_limit: o
1063                .determinize_size_limit
1064                .or(self.determinize_size_limit),
1065        }
1066    }
1067}
1068
1069/// A builder for constructing a deterministic finite automaton from regular
1070/// expressions.
1071///
1072/// This builder provides two main things:
1073///
1074/// 1. It provides a few different `build` routines for actually constructing
1075/// a DFA from different kinds of inputs. The most convenient is
1076/// [`Builder::build`], which builds a DFA directly from a pattern string. The
1077/// most flexible is [`Builder::build_from_nfa`], which builds a DFA straight
1078/// from an NFA.
1079/// 2. The builder permits configuring a number of things.
1080/// [`Builder::configure`] is used with [`Config`] to configure aspects of
1081/// the DFA and the construction process itself. [`Builder::syntax`] and
1082/// [`Builder::thompson`] permit configuring the regex parser and Thompson NFA
1083/// construction, respectively. The syntax and thompson configurations only
1084/// apply when building from a pattern string.
1085///
1086/// This builder always constructs a *single* DFA. As such, this builder
1087/// can only be used to construct regexes that either detect the presence
1088/// of a match or find the end location of a match. A single DFA cannot
1089/// produce both the start and end of a match. For that information, use a
1090/// [`Regex`](crate::dfa::regex::Regex), which can be similarly configured
1091/// using [`regex::Builder`](crate::dfa::regex::Builder). The main reason to
1092/// use a DFA directly is if the end location of a match is enough for your use
1093/// case. Namely, a `Regex` will construct two DFAs instead of one, since a
1094/// second reverse DFA is needed to find the start of a match.
1095///
1096/// Note that if one wants to build a sparse DFA, you must first build a dense
1097/// DFA and convert that to a sparse DFA. There is no way to build a sparse
1098/// DFA without first building a dense DFA.
1099///
1100/// # Example
1101///
1102/// This example shows how to build a minimized DFA that completely disables
1103/// Unicode. That is:
1104///
1105/// * Things such as `\w`, `.` and `\b` are no longer Unicode-aware. `\w`
1106///   and `\b` are ASCII-only while `.` matches any byte except for `\n`
1107///   (instead of any UTF-8 encoding of a Unicode scalar value except for
1108///   `\n`). Things that are Unicode only, such as `\pL`, are not allowed.
1109/// * The pattern itself is permitted to match invalid UTF-8. For example,
1110///   things like `[^a]` that match any byte except for `a` are permitted.
1111///
1112/// ```
1113/// use regex_automata::{
1114///     dfa::{Automaton, dense},
1115///     util::syntax,
1116///     HalfMatch, Input,
1117/// };
1118///
1119/// let dfa = dense::Builder::new()
1120///     .configure(dense::Config::new().minimize(false))
1121///     .syntax(syntax::Config::new().unicode(false).utf8(false))
1122///     .build(r"foo[^b]ar.*")?;
1123///
1124/// let haystack = b"\xFEfoo\xFFar\xE2\x98\xFF\n";
1125/// let expected = Some(HalfMatch::must(0, 10));
1126/// let got = dfa.try_search_fwd(&Input::new(haystack))?;
1127/// assert_eq!(expected, got);
1128///
1129/// # Ok::<(), Box<dyn std::error::Error>>(())
1130/// ```
1131#[cfg(feature = "dfa-build")]
1132#[derive(Clone, Debug)]
1133pub struct Builder {
1134    config: Config,
1135    #[cfg(feature = "syntax")]
1136    thompson: thompson::Compiler,
1137}
1138
1139#[cfg(feature = "dfa-build")]
1140impl Builder {
1141    /// Create a new dense DFA builder with the default configuration.
1142    pub fn new() -> Builder {
1143        Builder {
1144            config: Config::default(),
1145            #[cfg(feature = "syntax")]
1146            thompson: thompson::Compiler::new(),
1147        }
1148    }
1149
1150    /// Build a DFA from the given pattern.
1151    ///
1152    /// If there was a problem parsing or compiling the pattern, then an error
1153    /// is returned.
1154    #[cfg(feature = "syntax")]
1155    pub fn build(&self, pattern: &str) -> Result<OwnedDFA, BuildError> {
1156        self.build_many(&[pattern])
1157    }
1158
1159    /// Build a DFA from the given patterns.
1160    ///
1161    /// When matches are returned, the pattern ID corresponds to the index of
1162    /// the pattern in the slice given.
1163    #[cfg(feature = "syntax")]
1164    pub fn build_many<P: AsRef<str>>(
1165        &self,
1166        patterns: &[P],
1167    ) -> Result<OwnedDFA, BuildError> {
1168        let nfa = self
1169            .thompson
1170            .clone()
1171            // We can always forcefully disable captures because DFAs do not
1172            // support them.
1173            .configure(
1174                thompson::Config::new()
1175                    .which_captures(thompson::WhichCaptures::None),
1176            )
1177            .build_many(patterns)
1178            .map_err(BuildError::nfa)?;
1179        self.build_from_nfa(&nfa)
1180    }
1181
1182    /// Build a DFA from the given NFA.
1183    ///
1184    /// # Example
1185    ///
1186    /// This example shows how to build a DFA if you already have an NFA in
1187    /// hand.
1188    ///
1189    /// ```
1190    /// use regex_automata::{
1191    ///     dfa::{Automaton, dense},
1192    ///     nfa::thompson::NFA,
1193    ///     HalfMatch, Input,
1194    /// };
1195    ///
1196    /// let haystack = "foo123bar".as_bytes();
1197    ///
1198    /// // This shows how to set non-default options for building an NFA.
1199    /// let nfa = NFA::compiler()
1200    ///     .configure(NFA::config().shrink(true))
1201    ///     .build(r"[0-9]+")?;
1202    /// let dfa = dense::Builder::new().build_from_nfa(&nfa)?;
1203    /// let expected = Some(HalfMatch::must(0, 6));
1204    /// let got = dfa.try_search_fwd(&Input::new(haystack))?;
1205    /// assert_eq!(expected, got);
1206    ///
1207    /// # Ok::<(), Box<dyn std::error::Error>>(())
1208    /// ```
1209    pub fn build_from_nfa(
1210        &self,
1211        nfa: &thompson::NFA,
1212    ) -> Result<OwnedDFA, BuildError> {
1213        let mut quitset = self.config.quitset.unwrap_or(ByteSet::empty());
1214        if self.config.get_unicode_word_boundary()
1215            && nfa.look_set_any().contains_word_unicode()
1216        {
1217            for b in 0x80..=0xFF {
1218                quitset.add(b);
1219            }
1220        }
1221        let classes = if !self.config.get_byte_classes() {
1222            // DFAs will always use the equivalence class map, but enabling
1223            // this option is useful for debugging. Namely, this will cause all
1224            // transitions to be defined over their actual bytes instead of an
1225            // opaque equivalence class identifier. The former is much easier
1226            // to grok as a human.
1227            ByteClasses::singletons()
1228        } else {
1229            let mut set = nfa.byte_class_set().clone();
1230            // It is important to distinguish any "quit" bytes from all other
1231            // bytes. Otherwise, a non-quit byte may end up in the same
1232            // class as a quit byte, and thus cause the DFA to stop when it
1233            // shouldn't.
1234            //
1235            // Test case:
1236            //
1237            //   regex-cli find match dense --unicode-word-boundary \
1238            //     -p '^#' -p '\b10\.55\.182\.100\b' -y @conn.json.1000x.log
1239            if !quitset.is_empty() {
1240                set.add_set(&quitset);
1241            }
1242            set.byte_classes()
1243        };
1244
1245        let mut dfa = DFA::initial(
1246            classes,
1247            nfa.pattern_len(),
1248            self.config.get_starts(),
1249            nfa.look_matcher(),
1250            self.config.get_starts_for_each_pattern(),
1251            self.config.get_prefilter().map(|p| p.clone()),
1252            quitset,
1253            Flags::from_nfa(&nfa),
1254        )?;
1255        determinize::Config::new()
1256            .match_kind(self.config.get_match_kind())
1257            .quit(quitset)
1258            .dfa_size_limit(self.config.get_dfa_size_limit())
1259            .determinize_size_limit(self.config.get_determinize_size_limit())
1260            .run(nfa, &mut dfa)?;
1261        if self.config.get_minimize() {
1262            dfa.minimize();
1263        }
1264        if self.config.get_accelerate() {
1265            dfa.accelerate();
1266        }
1267        // The state shuffling done before this point always assumes that start
1268        // states should be marked as "special," even though it isn't the
1269        // default configuration. State shuffling is complex enough as it is,
1270        // so it's simpler to just "fix" our special state ID ranges to not
1271        // include starting states after-the-fact.
1272        if !self.config.get_specialize_start_states() {
1273            dfa.special.set_no_special_start_states();
1274        }
1275        // Look for and set the universal starting states.
1276        dfa.set_universal_starts();
1277        dfa.tt.table.shrink_to_fit();
1278        dfa.st.table.shrink_to_fit();
1279        dfa.ms.slices.shrink_to_fit();
1280        dfa.ms.pattern_ids.shrink_to_fit();
1281        Ok(dfa)
1282    }
1283
1284    /// Apply the given dense DFA configuration options to this builder.
1285    pub fn configure(&mut self, config: Config) -> &mut Builder {
1286        self.config = self.config.overwrite(config);
1287        self
1288    }
1289
1290    /// Set the syntax configuration for this builder using
1291    /// [`syntax::Config`](crate::util::syntax::Config).
1292    ///
1293    /// This permits setting things like case insensitivity, Unicode and multi
1294    /// line mode.
1295    ///
1296    /// These settings only apply when constructing a DFA directly from a
1297    /// pattern.
1298    #[cfg(feature = "syntax")]
1299    pub fn syntax(
1300        &mut self,
1301        config: crate::util::syntax::Config,
1302    ) -> &mut Builder {
1303        self.thompson.syntax(config);
1304        self
1305    }
1306
1307    /// Set the Thompson NFA configuration for this builder using
1308    /// [`nfa::thompson::Config`](crate::nfa::thompson::Config).
1309    ///
1310    /// This permits setting things like whether the DFA should match the regex
1311    /// in reverse or if additional time should be spent shrinking the size of
1312    /// the NFA.
1313    ///
1314    /// These settings only apply when constructing a DFA directly from a
1315    /// pattern.
1316    #[cfg(feature = "syntax")]
1317    pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder {
1318        self.thompson.configure(config);
1319        self
1320    }
1321}
1322
1323#[cfg(feature = "dfa-build")]
1324impl Default for Builder {
1325    fn default() -> Builder {
1326        Builder::new()
1327    }
1328}
1329
1330/// A convenience alias for an owned DFA. We use this particular instantiation
1331/// a lot in this crate, so it's worth giving it a name. This instantiation
1332/// is commonly used for mutable APIs on the DFA while building it. The main
1333/// reason for making DFAs generic is no_std support, and more generally,
1334/// making it possible to load a DFA from an arbitrary slice of bytes.
1335#[cfg(feature = "alloc")]
1336pub(crate) type OwnedDFA = DFA<alloc::vec::Vec<u32>>;
1337
1338/// A dense table-based deterministic finite automaton (DFA).
1339///
1340/// All dense DFAs have one or more start states, zero or more match states
1341/// and a transition table that maps the current state and the current byte
1342/// of input to the next state. A DFA can use this information to implement
1343/// fast searching. In particular, the use of a dense DFA generally makes the
1344/// trade off that match speed is the most valuable characteristic, even if
1345/// building the DFA may take significant time *and* space. (More concretely,
1346/// building a DFA takes time and space that is exponential in the size of the
1347/// pattern in the worst case.) As such, the processing of every byte of input
1348/// is done with a small constant number of operations that does not vary with
1349/// the pattern, its size or the size of the alphabet. If your needs don't line
1350/// up with this trade off, then a dense DFA may not be an adequate solution to
1351/// your problem.
1352///
1353/// In contrast, a [`sparse::DFA`] makes the opposite
1354/// trade off: it uses less space but will execute a variable number of
1355/// instructions per byte at match time, which makes it slower for matching.
1356/// (Note that space usage is still exponential in the size of the pattern in
1357/// the worst case.)
1358///
1359/// A DFA can be built using the default configuration via the
1360/// [`DFA::new`] constructor. Otherwise, one can
1361/// configure various aspects via [`dense::Builder`](Builder).
1362///
1363/// A single DFA fundamentally supports the following operations:
1364///
1365/// 1. Detection of a match.
1366/// 2. Location of the end of a match.
1367/// 3. In the case of a DFA with multiple patterns, which pattern matched is
1368///    reported as well.
1369///
1370/// A notable absence from the above list of capabilities is the location of
1371/// the *start* of a match. In order to provide both the start and end of
1372/// a match, *two* DFAs are required. This functionality is provided by a
1373/// [`Regex`](crate::dfa::regex::Regex).
1374///
1375/// # Type parameters
1376///
1377/// A `DFA` has one type parameter, `T`, which is used to represent state IDs,
1378/// pattern IDs and accelerators. `T` is typically a `Vec<u32>` or a `&[u32]`.
1379///
1380/// # The `Automaton` trait
1381///
1382/// This type implements the [`Automaton`] trait, which means it can be used
1383/// for searching. For example:
1384///
1385/// ```
1386/// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1387///
1388/// let dfa = DFA::new("foo[0-9]+")?;
1389/// let expected = HalfMatch::must(0, 8);
1390/// assert_eq!(Some(expected), dfa.try_search_fwd(&Input::new("foo12345"))?);
1391/// # Ok::<(), Box<dyn std::error::Error>>(())
1392/// ```
1393#[derive(Clone)]
1394pub struct DFA<T> {
1395    /// The transition table for this DFA. This includes the transitions
1396    /// themselves, along with the stride, number of states and the equivalence
1397    /// class mapping.
1398    tt: TransitionTable<T>,
1399    /// The set of starting state identifiers for this DFA. The starting state
1400    /// IDs act as pointers into the transition table. The specific starting
1401    /// state chosen for each search is dependent on the context at which the
1402    /// search begins.
1403    st: StartTable<T>,
1404    /// The set of match states and the patterns that match for each
1405    /// corresponding match state.
1406    ///
1407    /// This structure is technically only needed because of support for
1408    /// multi-regexes. Namely, multi-regexes require answering not just whether
1409    /// a match exists, but _which_ patterns match. So we need to store the
1410    /// matching pattern IDs for each match state. We do this even when there
1411    /// is only one pattern for the sake of simplicity. In practice, this uses
1412    /// up very little space for the case of one pattern.
1413    ms: MatchStates<T>,
1414    /// Information about which states are "special." Special states are states
1415    /// that are dead, quit, matching, starting or accelerated. For more info,
1416    /// see the docs for `Special`.
1417    special: Special,
1418    /// The accelerators for this DFA.
1419    ///
1420    /// If a state is accelerated, then there exist only a small number of
1421    /// bytes that can cause the DFA to leave the state. This permits searching
1422    /// to use optimized routines to find those specific bytes instead of using
1423    /// the transition table.
1424    ///
1425    /// All accelerated states exist in a contiguous range in the DFA's
1426    /// transition table. See dfa/special.rs for more details on how states are
1427    /// arranged.
1428    accels: Accels<T>,
1429    /// Any prefilter attached to this DFA.
1430    ///
1431    /// Note that currently prefilters are not serialized. When deserializing
1432    /// a DFA from bytes, this is always set to `None`.
1433    pre: Option<Prefilter>,
1434    /// The set of "quit" bytes for this DFA.
1435    ///
1436    /// This is only used when computing the start state for a particular
1437    /// position in a haystack. Namely, in the case where there is a quit
1438    /// byte immediately before the start of the search, this set needs to be
1439    /// explicitly consulted. In all other cases, quit bytes are detected by
1440    /// the DFA itself, by transitioning all quit bytes to a special "quit
1441    /// state."
1442    quitset: ByteSet,
1443    /// Various flags describing the behavior of this DFA.
1444    flags: Flags,
1445}
1446
1447#[cfg(feature = "dfa-build")]
1448impl OwnedDFA {
1449    /// Parse the given regular expression using a default configuration and
1450    /// return the corresponding DFA.
1451    ///
1452    /// If you want a non-default configuration, then use the
1453    /// [`dense::Builder`](Builder) to set your own configuration.
1454    ///
1455    /// # Example
1456    ///
1457    /// ```
1458    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
1459    ///
1460    /// let dfa = dense::DFA::new("foo[0-9]+bar")?;
1461    /// let expected = Some(HalfMatch::must(0, 11));
1462    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345bar"))?);
1463    /// # Ok::<(), Box<dyn std::error::Error>>(())
1464    /// ```
1465    #[cfg(feature = "syntax")]
1466    pub fn new(pattern: &str) -> Result<OwnedDFA, BuildError> {
1467        Builder::new().build(pattern)
1468    }
1469
1470    /// Parse the given regular expressions using a default configuration and
1471    /// return the corresponding multi-DFA.
1472    ///
1473    /// If you want a non-default configuration, then use the
1474    /// [`dense::Builder`](Builder) to set your own configuration.
1475    ///
1476    /// # Example
1477    ///
1478    /// ```
1479    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
1480    ///
1481    /// let dfa = dense::DFA::new_many(&["[0-9]+", "[a-z]+"])?;
1482    /// let expected = Some(HalfMatch::must(1, 3));
1483    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345bar"))?);
1484    /// # Ok::<(), Box<dyn std::error::Error>>(())
1485    /// ```
1486    #[cfg(feature = "syntax")]
1487    pub fn new_many<P: AsRef<str>>(
1488        patterns: &[P],
1489    ) -> Result<OwnedDFA, BuildError> {
1490        Builder::new().build_many(patterns)
1491    }
1492}
1493
1494#[cfg(feature = "dfa-build")]
1495impl OwnedDFA {
1496    /// Create a new DFA that matches every input.
1497    ///
1498    /// # Example
1499    ///
1500    /// ```
1501    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
1502    ///
1503    /// let dfa = dense::DFA::always_match()?;
1504    ///
1505    /// let expected = Some(HalfMatch::must(0, 0));
1506    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new(""))?);
1507    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo"))?);
1508    /// # Ok::<(), Box<dyn std::error::Error>>(())
1509    /// ```
1510    pub fn always_match() -> Result<OwnedDFA, BuildError> {
1511        let nfa = thompson::NFA::always_match();
1512        Builder::new().build_from_nfa(&nfa)
1513    }
1514
1515    /// Create a new DFA that never matches any input.
1516    ///
1517    /// # Example
1518    ///
1519    /// ```
1520    /// use regex_automata::{dfa::{Automaton, dense}, Input};
1521    ///
1522    /// let dfa = dense::DFA::never_match()?;
1523    /// assert_eq!(None, dfa.try_search_fwd(&Input::new(""))?);
1524    /// assert_eq!(None, dfa.try_search_fwd(&Input::new("foo"))?);
1525    /// # Ok::<(), Box<dyn std::error::Error>>(())
1526    /// ```
1527    pub fn never_match() -> Result<OwnedDFA, BuildError> {
1528        let nfa = thompson::NFA::never_match();
1529        Builder::new().build_from_nfa(&nfa)
1530    }
1531
1532    /// Create an initial DFA with the given equivalence classes, pattern
1533    /// length and whether anchored starting states are enabled for each
1534    /// pattern. An initial DFA can be further mutated via determinization.
1535    fn initial(
1536        classes: ByteClasses,
1537        pattern_len: usize,
1538        starts: StartKind,
1539        lookm: &LookMatcher,
1540        starts_for_each_pattern: bool,
1541        pre: Option<Prefilter>,
1542        quitset: ByteSet,
1543        flags: Flags,
1544    ) -> Result<OwnedDFA, BuildError> {
1545        let start_pattern_len =
1546            if starts_for_each_pattern { Some(pattern_len) } else { None };
1547        Ok(DFA {
1548            tt: TransitionTable::minimal(classes),
1549            st: StartTable::dead(starts, lookm, start_pattern_len)?,
1550            ms: MatchStates::empty(pattern_len),
1551            special: Special::new(),
1552            accels: Accels::empty(),
1553            pre,
1554            quitset,
1555            flags,
1556        })
1557    }
1558}
1559
1560#[cfg(feature = "dfa-build")]
1561impl DFA<&[u32]> {
1562    /// Return a new default dense DFA compiler configuration.
1563    ///
1564    /// This is a convenience routine to avoid needing to import the [`Config`]
1565    /// type when customizing the construction of a dense DFA.
1566    pub fn config() -> Config {
1567        Config::new()
1568    }
1569
1570    /// Create a new dense DFA builder with the default configuration.
1571    ///
1572    /// This is a convenience routine to avoid needing to import the
1573    /// [`Builder`] type in common cases.
1574    pub fn builder() -> Builder {
1575        Builder::new()
1576    }
1577}
1578
1579impl<T: AsRef<[u32]>> DFA<T> {
1580    /// Cheaply return a borrowed version of this dense DFA. Specifically,
1581    /// the DFA returned always uses `&[u32]` for its transition table.
1582    pub fn as_ref(&self) -> DFA<&'_ [u32]> {
1583        DFA {
1584            tt: self.tt.as_ref(),
1585            st: self.st.as_ref(),
1586            ms: self.ms.as_ref(),
1587            special: self.special,
1588            accels: self.accels(),
1589            pre: self.pre.clone(),
1590            quitset: self.quitset,
1591            flags: self.flags,
1592        }
1593    }
1594
1595    /// Return an owned version of this sparse DFA. Specifically, the DFA
1596    /// returned always uses `Vec<u32>` for its transition table.
1597    ///
1598    /// Effectively, this returns a dense DFA whose transition table lives on
1599    /// the heap.
1600    #[cfg(feature = "alloc")]
1601    pub fn to_owned(&self) -> OwnedDFA {
1602        DFA {
1603            tt: self.tt.to_owned(),
1604            st: self.st.to_owned(),
1605            ms: self.ms.to_owned(),
1606            special: self.special,
1607            accels: self.accels().to_owned(),
1608            pre: self.pre.clone(),
1609            quitset: self.quitset,
1610            flags: self.flags,
1611        }
1612    }
1613
1614    /// Returns the starting state configuration for this DFA.
1615    ///
1616    /// The default is [`StartKind::Both`], which means the DFA supports both
1617    /// unanchored and anchored searches. However, this can generally lead to
1618    /// bigger DFAs. Therefore, a DFA might be compiled with support for just
1619    /// unanchored or anchored searches. In that case, running a search with
1620    /// an unsupported configuration will panic.
1621    pub fn start_kind(&self) -> StartKind {
1622        self.st.kind
1623    }
1624
1625    /// Returns the start byte map used for computing the `Start` configuration
1626    /// at the beginning of a search.
1627    pub(crate) fn start_map(&self) -> &StartByteMap {
1628        &self.st.start_map
1629    }
1630
1631    /// Returns true only if this DFA has starting states for each pattern.
1632    ///
1633    /// When a DFA has starting states for each pattern, then a search with the
1634    /// DFA can be configured to only look for anchored matches of a specific
1635    /// pattern. Specifically, APIs like [`Automaton::try_search_fwd`] can
1636    /// accept a non-None `pattern_id` if and only if this method returns true.
1637    /// Otherwise, calling `try_search_fwd` will panic.
1638    ///
1639    /// Note that if the DFA has no patterns, this always returns false.
1640    pub fn starts_for_each_pattern(&self) -> bool {
1641        self.st.pattern_len.is_some()
1642    }
1643
1644    /// Returns the equivalence classes that make up the alphabet for this DFA.
1645    ///
1646    /// Unless [`Config::byte_classes`] was disabled, it is possible that
1647    /// multiple distinct bytes are grouped into the same equivalence class
1648    /// if it is impossible for them to discriminate between a match and a
1649    /// non-match. This has the effect of reducing the overall alphabet size
1650    /// and in turn potentially substantially reducing the size of the DFA's
1651    /// transition table.
1652    ///
1653    /// The downside of using equivalence classes like this is that every state
1654    /// transition will automatically use this map to convert an arbitrary
1655    /// byte to its corresponding equivalence class. In practice this has a
1656    /// negligible impact on performance.
1657    pub fn byte_classes(&self) -> &ByteClasses {
1658        &self.tt.classes
1659    }
1660
1661    /// Returns the total number of elements in the alphabet for this DFA.
1662    ///
1663    /// That is, this returns the total number of transitions that each state
1664    /// in this DFA must have. Typically, a normal byte oriented DFA would
1665    /// always have an alphabet size of 256, corresponding to the number of
1666    /// unique values in a single byte. However, this implementation has two
1667    /// peculiarities that impact the alphabet length:
1668    ///
1669    /// * Every state has a special "EOI" transition that is only followed
1670    /// after the end of some haystack is reached. This EOI transition is
1671    /// necessary to account for one byte of look-ahead when implementing
1672    /// things like `\b` and `$`.
1673    /// * Bytes are grouped into equivalence classes such that no two bytes in
1674    /// the same class can distinguish a match from a non-match. For example,
1675    /// in the regex `^[a-z]+$`, the ASCII bytes `a-z` could all be in the
1676    /// same equivalence class. This leads to a massive space savings.
1677    ///
1678    /// Note though that the alphabet length does _not_ necessarily equal the
1679    /// total stride space taken up by a single DFA state in the transition
1680    /// table. Namely, for performance reasons, the stride is always the
1681    /// smallest power of two that is greater than or equal to the alphabet
1682    /// length. For this reason, [`DFA::stride`] or [`DFA::stride2`] are
1683    /// often more useful. The alphabet length is typically useful only for
1684    /// informational purposes.
1685    pub fn alphabet_len(&self) -> usize {
1686        self.tt.alphabet_len()
1687    }
1688
1689    /// Returns the total stride for every state in this DFA, expressed as the
1690    /// exponent of a power of 2. The stride is the amount of space each state
1691    /// takes up in the transition table, expressed as a number of transitions.
1692    /// (Unused transitions map to dead states.)
1693    ///
1694    /// The stride of a DFA is always equivalent to the smallest power of 2
1695    /// that is greater than or equal to the DFA's alphabet length. This
1696    /// definition uses extra space, but permits faster translation between
1697    /// premultiplied state identifiers and contiguous indices (by using shifts
1698    /// instead of relying on integer division).
1699    ///
1700    /// For example, if the DFA's stride is 16 transitions, then its `stride2`
1701    /// is `4` since `2^4 = 16`.
1702    ///
1703    /// The minimum `stride2` value is `1` (corresponding to a stride of `2`)
1704    /// while the maximum `stride2` value is `9` (corresponding to a stride of
1705    /// `512`). The maximum is not `8` since the maximum alphabet size is `257`
1706    /// when accounting for the special EOI transition. However, an alphabet
1707    /// length of that size is exceptionally rare since the alphabet is shrunk
1708    /// into equivalence classes.
1709    pub fn stride2(&self) -> usize {
1710        self.tt.stride2
1711    }
1712
1713    /// Returns the total stride for every state in this DFA. This corresponds
1714    /// to the total number of transitions used by each state in this DFA's
1715    /// transition table.
1716    ///
1717    /// Please see [`DFA::stride2`] for more information. In particular, this
1718    /// returns the stride as the number of transitions, where as `stride2`
1719    /// returns it as the exponent of a power of 2.
1720    pub fn stride(&self) -> usize {
1721        self.tt.stride()
1722    }
1723
1724    /// Returns the memory usage, in bytes, of this DFA.
1725    ///
1726    /// The memory usage is computed based on the number of bytes used to
1727    /// represent this DFA.
1728    ///
1729    /// This does **not** include the stack size used up by this DFA. To
1730    /// compute that, use `std::mem::size_of::<dense::DFA>()`.
1731    pub fn memory_usage(&self) -> usize {
1732        self.tt.memory_usage()
1733            + self.st.memory_usage()
1734            + self.ms.memory_usage()
1735            + self.accels.memory_usage()
1736    }
1737}
1738
1739/// Routines for converting a dense DFA to other representations, such as
1740/// sparse DFAs or raw bytes suitable for persistent storage.
1741impl<T: AsRef<[u32]>> DFA<T> {
1742    /// Convert this dense DFA to a sparse DFA.
1743    ///
1744    /// If a `StateID` is too small to represent all states in the sparse
1745    /// DFA, then this returns an error. In most cases, if a dense DFA is
1746    /// constructable with `StateID` then a sparse DFA will be as well.
1747    /// However, it is not guaranteed.
1748    ///
1749    /// # Example
1750    ///
1751    /// ```
1752    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
1753    ///
1754    /// let dense = dense::DFA::new("foo[0-9]+")?;
1755    /// let sparse = dense.to_sparse()?;
1756    ///
1757    /// let expected = Some(HalfMatch::must(0, 8));
1758    /// assert_eq!(expected, sparse.try_search_fwd(&Input::new("foo12345"))?);
1759    /// # Ok::<(), Box<dyn std::error::Error>>(())
1760    /// ```
1761    #[cfg(feature = "dfa-build")]
1762    pub fn to_sparse(&self) -> Result<sparse::DFA<Vec<u8>>, BuildError> {
1763        sparse::DFA::from_dense(self)
1764    }
1765
1766    /// Serialize this DFA as raw bytes to a `Vec<u8>` in little endian
1767    /// format. Upon success, the `Vec<u8>` and the initial padding length are
1768    /// returned.
1769    ///
1770    /// The written bytes are guaranteed to be deserialized correctly and
1771    /// without errors in a semver compatible release of this crate by a
1772    /// `DFA`'s deserialization APIs (assuming all other criteria for the
1773    /// deserialization APIs has been satisfied):
1774    ///
1775    /// * [`DFA::from_bytes`]
1776    /// * [`DFA::from_bytes_unchecked`]
1777    ///
1778    /// The padding returned is non-zero if the returned `Vec<u8>` starts at
1779    /// an address that does not have the same alignment as `u32`. The padding
1780    /// corresponds to the number of leading bytes written to the returned
1781    /// `Vec<u8>`.
1782    ///
1783    /// # Example
1784    ///
1785    /// This example shows how to serialize and deserialize a DFA:
1786    ///
1787    /// ```
1788    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1789    ///
1790    /// // Compile our original DFA.
1791    /// let original_dfa = DFA::new("foo[0-9]+")?;
1792    ///
1793    /// // N.B. We use native endianness here to make the example work, but
1794    /// // using to_bytes_little_endian would work on a little endian target.
1795    /// let (buf, _) = original_dfa.to_bytes_native_endian();
1796    /// // Even if buf has initial padding, DFA::from_bytes will automatically
1797    /// // ignore it.
1798    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
1799    ///
1800    /// let expected = Some(HalfMatch::must(0, 8));
1801    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
1802    /// # Ok::<(), Box<dyn std::error::Error>>(())
1803    /// ```
1804    #[cfg(feature = "dfa-build")]
1805    pub fn to_bytes_little_endian(&self) -> (Vec<u8>, usize) {
1806        self.to_bytes::<wire::LE>()
1807    }
1808
1809    /// Serialize this DFA as raw bytes to a `Vec<u8>` in big endian
1810    /// format. Upon success, the `Vec<u8>` and the initial padding length are
1811    /// returned.
1812    ///
1813    /// The written bytes are guaranteed to be deserialized correctly and
1814    /// without errors in a semver compatible release of this crate by a
1815    /// `DFA`'s deserialization APIs (assuming all other criteria for the
1816    /// deserialization APIs has been satisfied):
1817    ///
1818    /// * [`DFA::from_bytes`]
1819    /// * [`DFA::from_bytes_unchecked`]
1820    ///
1821    /// The padding returned is non-zero if the returned `Vec<u8>` starts at
1822    /// an address that does not have the same alignment as `u32`. The padding
1823    /// corresponds to the number of leading bytes written to the returned
1824    /// `Vec<u8>`.
1825    ///
1826    /// # Example
1827    ///
1828    /// This example shows how to serialize and deserialize a DFA:
1829    ///
1830    /// ```
1831    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1832    ///
1833    /// // Compile our original DFA.
1834    /// let original_dfa = DFA::new("foo[0-9]+")?;
1835    ///
1836    /// // N.B. We use native endianness here to make the example work, but
1837    /// // using to_bytes_big_endian would work on a big endian target.
1838    /// let (buf, _) = original_dfa.to_bytes_native_endian();
1839    /// // Even if buf has initial padding, DFA::from_bytes will automatically
1840    /// // ignore it.
1841    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
1842    ///
1843    /// let expected = Some(HalfMatch::must(0, 8));
1844    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
1845    /// # Ok::<(), Box<dyn std::error::Error>>(())
1846    /// ```
1847    #[cfg(feature = "dfa-build")]
1848    pub fn to_bytes_big_endian(&self) -> (Vec<u8>, usize) {
1849        self.to_bytes::<wire::BE>()
1850    }
1851
1852    /// Serialize this DFA as raw bytes to a `Vec<u8>` in native endian
1853    /// format. Upon success, the `Vec<u8>` and the initial padding length are
1854    /// returned.
1855    ///
1856    /// The written bytes are guaranteed to be deserialized correctly and
1857    /// without errors in a semver compatible release of this crate by a
1858    /// `DFA`'s deserialization APIs (assuming all other criteria for the
1859    /// deserialization APIs has been satisfied):
1860    ///
1861    /// * [`DFA::from_bytes`]
1862    /// * [`DFA::from_bytes_unchecked`]
1863    ///
1864    /// The padding returned is non-zero if the returned `Vec<u8>` starts at
1865    /// an address that does not have the same alignment as `u32`. The padding
1866    /// corresponds to the number of leading bytes written to the returned
1867    /// `Vec<u8>`.
1868    ///
1869    /// Generally speaking, native endian format should only be used when
1870    /// you know that the target you're compiling the DFA for matches the
1871    /// endianness of the target on which you're compiling DFA. For example,
1872    /// if serialization and deserialization happen in the same process or on
1873    /// the same machine. Otherwise, when serializing a DFA for use in a
1874    /// portable environment, you'll almost certainly want to serialize _both_
1875    /// a little endian and a big endian version and then load the correct one
1876    /// based on the target's configuration.
1877    ///
1878    /// # Example
1879    ///
1880    /// This example shows how to serialize and deserialize a DFA:
1881    ///
1882    /// ```
1883    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1884    ///
1885    /// // Compile our original DFA.
1886    /// let original_dfa = DFA::new("foo[0-9]+")?;
1887    ///
1888    /// let (buf, _) = original_dfa.to_bytes_native_endian();
1889    /// // Even if buf has initial padding, DFA::from_bytes will automatically
1890    /// // ignore it.
1891    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
1892    ///
1893    /// let expected = Some(HalfMatch::must(0, 8));
1894    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
1895    /// # Ok::<(), Box<dyn std::error::Error>>(())
1896    /// ```
1897    #[cfg(feature = "dfa-build")]
1898    pub fn to_bytes_native_endian(&self) -> (Vec<u8>, usize) {
1899        self.to_bytes::<wire::NE>()
1900    }
1901
1902    /// The implementation of the public `to_bytes` serialization methods,
1903    /// which is generic over endianness.
1904    #[cfg(feature = "dfa-build")]
1905    fn to_bytes<E: Endian>(&self) -> (Vec<u8>, usize) {
1906        let len = self.write_to_len();
1907        let (mut buf, padding) = wire::alloc_aligned_buffer::<u32>(len);
1908        // This should always succeed since the only possible serialization
1909        // error is providing a buffer that's too small, but we've ensured that
1910        // `buf` is big enough here.
1911        self.as_ref().write_to::<E>(&mut buf[padding..]).unwrap();
1912        (buf, padding)
1913    }
1914
1915    /// Serialize this DFA as raw bytes to the given slice, in little endian
1916    /// format. Upon success, the total number of bytes written to `dst` is
1917    /// returned.
1918    ///
1919    /// The written bytes are guaranteed to be deserialized correctly and
1920    /// without errors in a semver compatible release of this crate by a
1921    /// `DFA`'s deserialization APIs (assuming all other criteria for the
1922    /// deserialization APIs has been satisfied):
1923    ///
1924    /// * [`DFA::from_bytes`]
1925    /// * [`DFA::from_bytes_unchecked`]
1926    ///
1927    /// Note that unlike the various `to_byte_*` routines, this does not write
1928    /// any padding. Callers are responsible for handling alignment correctly.
1929    ///
1930    /// # Errors
1931    ///
1932    /// This returns an error if the given destination slice is not big enough
1933    /// to contain the full serialized DFA. If an error occurs, then nothing
1934    /// is written to `dst`.
1935    ///
1936    /// # Example
1937    ///
1938    /// This example shows how to serialize and deserialize a DFA without
1939    /// dynamic memory allocation.
1940    ///
1941    /// ```
1942    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1943    ///
1944    /// // Compile our original DFA.
1945    /// let original_dfa = DFA::new("foo[0-9]+")?;
1946    ///
1947    /// // Create a 4KB buffer on the stack to store our serialized DFA. We
1948    /// // need to use a special type to force the alignment of our [u8; N]
1949    /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing
1950    /// // the DFA may fail because of an alignment mismatch.
1951    /// #[repr(C)]
1952    /// struct Aligned<B: ?Sized> {
1953    ///     _align: [u32; 0],
1954    ///     bytes: B,
1955    /// }
1956    /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] };
1957    /// // N.B. We use native endianness here to make the example work, but
1958    /// // using write_to_little_endian would work on a little endian target.
1959    /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?;
1960    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0;
1961    ///
1962    /// let expected = Some(HalfMatch::must(0, 8));
1963    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
1964    /// # Ok::<(), Box<dyn std::error::Error>>(())
1965    /// ```
1966    pub fn write_to_little_endian(
1967        &self,
1968        dst: &mut [u8],
1969    ) -> Result<usize, SerializeError> {
1970        self.as_ref().write_to::<wire::LE>(dst)
1971    }
1972
1973    /// Serialize this DFA as raw bytes to the given slice, in big endian
1974    /// format. Upon success, the total number of bytes written to `dst` is
1975    /// returned.
1976    ///
1977    /// The written bytes are guaranteed to be deserialized correctly and
1978    /// without errors in a semver compatible release of this crate by a
1979    /// `DFA`'s deserialization APIs (assuming all other criteria for the
1980    /// deserialization APIs has been satisfied):
1981    ///
1982    /// * [`DFA::from_bytes`]
1983    /// * [`DFA::from_bytes_unchecked`]
1984    ///
1985    /// Note that unlike the various `to_byte_*` routines, this does not write
1986    /// any padding. Callers are responsible for handling alignment correctly.
1987    ///
1988    /// # Errors
1989    ///
1990    /// This returns an error if the given destination slice is not big enough
1991    /// to contain the full serialized DFA. If an error occurs, then nothing
1992    /// is written to `dst`.
1993    ///
1994    /// # Example
1995    ///
1996    /// This example shows how to serialize and deserialize a DFA without
1997    /// dynamic memory allocation.
1998    ///
1999    /// ```
2000    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2001    ///
2002    /// // Compile our original DFA.
2003    /// let original_dfa = DFA::new("foo[0-9]+")?;
2004    ///
2005    /// // Create a 4KB buffer on the stack to store our serialized DFA. We
2006    /// // need to use a special type to force the alignment of our [u8; N]
2007    /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing
2008    /// // the DFA may fail because of an alignment mismatch.
2009    /// #[repr(C)]
2010    /// struct Aligned<B: ?Sized> {
2011    ///     _align: [u32; 0],
2012    ///     bytes: B,
2013    /// }
2014    /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] };
2015    /// // N.B. We use native endianness here to make the example work, but
2016    /// // using write_to_big_endian would work on a big endian target.
2017    /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?;
2018    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0;
2019    ///
2020    /// let expected = Some(HalfMatch::must(0, 8));
2021    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2022    /// # Ok::<(), Box<dyn std::error::Error>>(())
2023    /// ```
2024    pub fn write_to_big_endian(
2025        &self,
2026        dst: &mut [u8],
2027    ) -> Result<usize, SerializeError> {
2028        self.as_ref().write_to::<wire::BE>(dst)
2029    }
2030
2031    /// Serialize this DFA as raw bytes to the given slice, in native endian
2032    /// format. Upon success, the total number of bytes written to `dst` is
2033    /// returned.
2034    ///
2035    /// The written bytes are guaranteed to be deserialized correctly and
2036    /// without errors in a semver compatible release of this crate by a
2037    /// `DFA`'s deserialization APIs (assuming all other criteria for the
2038    /// deserialization APIs has been satisfied):
2039    ///
2040    /// * [`DFA::from_bytes`]
2041    /// * [`DFA::from_bytes_unchecked`]
2042    ///
2043    /// Generally speaking, native endian format should only be used when
2044    /// you know that the target you're compiling the DFA for matches the
2045    /// endianness of the target on which you're compiling DFA. For example,
2046    /// if serialization and deserialization happen in the same process or on
2047    /// the same machine. Otherwise, when serializing a DFA for use in a
2048    /// portable environment, you'll almost certainly want to serialize _both_
2049    /// a little endian and a big endian version and then load the correct one
2050    /// based on the target's configuration.
2051    ///
2052    /// Note that unlike the various `to_byte_*` routines, this does not write
2053    /// any padding. Callers are responsible for handling alignment correctly.
2054    ///
2055    /// # Errors
2056    ///
2057    /// This returns an error if the given destination slice is not big enough
2058    /// to contain the full serialized DFA. If an error occurs, then nothing
2059    /// is written to `dst`.
2060    ///
2061    /// # Example
2062    ///
2063    /// This example shows how to serialize and deserialize a DFA without
2064    /// dynamic memory allocation.
2065    ///
2066    /// ```
2067    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2068    ///
2069    /// // Compile our original DFA.
2070    /// let original_dfa = DFA::new("foo[0-9]+")?;
2071    ///
2072    /// // Create a 4KB buffer on the stack to store our serialized DFA. We
2073    /// // need to use a special type to force the alignment of our [u8; N]
2074    /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing
2075    /// // the DFA may fail because of an alignment mismatch.
2076    /// #[repr(C)]
2077    /// struct Aligned<B: ?Sized> {
2078    ///     _align: [u32; 0],
2079    ///     bytes: B,
2080    /// }
2081    /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] };
2082    /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?;
2083    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0;
2084    ///
2085    /// let expected = Some(HalfMatch::must(0, 8));
2086    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2087    /// # Ok::<(), Box<dyn std::error::Error>>(())
2088    /// ```
2089    pub fn write_to_native_endian(
2090        &self,
2091        dst: &mut [u8],
2092    ) -> Result<usize, SerializeError> {
2093        self.as_ref().write_to::<wire::NE>(dst)
2094    }
2095
2096    /// Return the total number of bytes required to serialize this DFA.
2097    ///
2098    /// This is useful for determining the size of the buffer required to pass
2099    /// to one of the serialization routines:
2100    ///
2101    /// * [`DFA::write_to_little_endian`]
2102    /// * [`DFA::write_to_big_endian`]
2103    /// * [`DFA::write_to_native_endian`]
2104    ///
2105    /// Passing a buffer smaller than the size returned by this method will
2106    /// result in a serialization error. Serialization routines are guaranteed
2107    /// to succeed when the buffer is big enough.
2108    ///
2109    /// # Example
2110    ///
2111    /// This example shows how to dynamically allocate enough room to serialize
2112    /// a DFA.
2113    ///
2114    /// ```
2115    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2116    ///
2117    /// let original_dfa = DFA::new("foo[0-9]+")?;
2118    ///
2119    /// let mut buf = vec![0; original_dfa.write_to_len()];
2120    /// // This is guaranteed to succeed, because the only serialization error
2121    /// // that can occur is when the provided buffer is too small. But
2122    /// // write_to_len guarantees a correct size.
2123    /// let written = original_dfa.write_to_native_endian(&mut buf).unwrap();
2124    /// // But this is not guaranteed to succeed! In particular,
2125    /// // deserialization requires proper alignment for &[u32], but our buffer
2126    /// // was allocated as a &[u8] whose required alignment is smaller than
2127    /// // &[u32]. However, it's likely to work in practice because of how most
2128    /// // allocators work. So if you write code like this, make sure to either
2129    /// // handle the error correctly and/or run it under Miri since Miri will
2130    /// // likely provoke the error by returning Vec<u8> buffers with alignment
2131    /// // less than &[u32].
2132    /// let dfa: DFA<&[u32]> = match DFA::from_bytes(&buf[..written]) {
2133    ///     // As mentioned above, it is legal for an error to be returned
2134    ///     // here. It is quite difficult to get a Vec<u8> with a guaranteed
2135    ///     // alignment equivalent to Vec<u32>.
2136    ///     Err(_) => return Ok(()),
2137    ///     Ok((dfa, _)) => dfa,
2138    /// };
2139    ///
2140    /// let expected = Some(HalfMatch::must(0, 8));
2141    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2142    /// # Ok::<(), Box<dyn std::error::Error>>(())
2143    /// ```
2144    ///
2145    /// Note that this example isn't actually guaranteed to work! In
2146    /// particular, if `buf` is not aligned to a 4-byte boundary, then the
2147    /// `DFA::from_bytes` call will fail. If you need this to work, then you
2148    /// either need to deal with adding some initial padding yourself, or use
2149    /// one of the `to_bytes` methods, which will do it for you.
2150    pub fn write_to_len(&self) -> usize {
2151        wire::write_label_len(LABEL)
2152        + wire::write_endianness_check_len()
2153        + wire::write_version_len()
2154        + size_of::<u32>() // unused, intended for future flexibility
2155        + self.flags.write_to_len()
2156        + self.tt.write_to_len()
2157        + self.st.write_to_len()
2158        + self.ms.write_to_len()
2159        + self.special.write_to_len()
2160        + self.accels.write_to_len()
2161        + self.quitset.write_to_len()
2162    }
2163}
2164
2165impl<'a> DFA<&'a [u32]> {
2166    /// Safely deserialize a DFA with a specific state identifier
2167    /// representation. Upon success, this returns both the deserialized DFA
2168    /// and the number of bytes read from the given slice. Namely, the contents
2169    /// of the slice beyond the DFA are not read.
2170    ///
2171    /// Deserializing a DFA using this routine will never allocate heap memory.
2172    /// For safety purposes, the DFA's transition table will be verified such
2173    /// that every transition points to a valid state. If this verification is
2174    /// too costly, then a [`DFA::from_bytes_unchecked`] API is provided, which
2175    /// will always execute in constant time.
2176    ///
2177    /// The bytes given must be generated by one of the serialization APIs
2178    /// of a `DFA` using a semver compatible release of this crate. Those
2179    /// include:
2180    ///
2181    /// * [`DFA::to_bytes_little_endian`]
2182    /// * [`DFA::to_bytes_big_endian`]
2183    /// * [`DFA::to_bytes_native_endian`]
2184    /// * [`DFA::write_to_little_endian`]
2185    /// * [`DFA::write_to_big_endian`]
2186    /// * [`DFA::write_to_native_endian`]
2187    ///
2188    /// The `to_bytes` methods allocate and return a `Vec<u8>` for you, along
2189    /// with handling alignment correctly. The `write_to` methods do not
2190    /// allocate and write to an existing slice (which may be on the stack).
2191    /// Since deserialization always uses the native endianness of the target
2192    /// platform, the serialization API you use should match the endianness of
2193    /// the target platform. (It's often a good idea to generate serialized
2194    /// DFAs for both forms of endianness and then load the correct one based
2195    /// on endianness.)
2196    ///
2197    /// # Errors
2198    ///
2199    /// Generally speaking, it's easier to state the conditions in which an
2200    /// error is _not_ returned. All of the following must be true:
2201    ///
2202    /// * The bytes given must be produced by one of the serialization APIs
2203    ///   on this DFA, as mentioned above.
2204    /// * The endianness of the target platform matches the endianness used to
2205    ///   serialized the provided DFA.
2206    /// * The slice given must have the same alignment as `u32`.
2207    ///
2208    /// If any of the above are not true, then an error will be returned.
2209    ///
2210    /// # Panics
2211    ///
2212    /// This routine will never panic for any input.
2213    ///
2214    /// # Example
2215    ///
2216    /// This example shows how to serialize a DFA to raw bytes, deserialize it
2217    /// and then use it for searching.
2218    ///
2219    /// ```
2220    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2221    ///
2222    /// let initial = DFA::new("foo[0-9]+")?;
2223    /// let (bytes, _) = initial.to_bytes_native_endian();
2224    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes)?.0;
2225    ///
2226    /// let expected = Some(HalfMatch::must(0, 8));
2227    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2228    /// # Ok::<(), Box<dyn std::error::Error>>(())
2229    /// ```
2230    ///
2231    /// # Example: dealing with alignment and padding
2232    ///
2233    /// In the above example, we used the `to_bytes_native_endian` method to
2234    /// serialize a DFA, but we ignored part of its return value corresponding
2235    /// to padding added to the beginning of the serialized DFA. This is OK
2236    /// because deserialization will skip this initial padding. What matters
2237    /// is that the address immediately following the padding has an alignment
2238    /// that matches `u32`. That is, the following is an equivalent but
2239    /// alternative way to write the above example:
2240    ///
2241    /// ```
2242    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2243    ///
2244    /// let initial = DFA::new("foo[0-9]+")?;
2245    /// // Serialization returns the number of leading padding bytes added to
2246    /// // the returned Vec<u8>.
2247    /// let (bytes, pad) = initial.to_bytes_native_endian();
2248    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes[pad..])?.0;
2249    ///
2250    /// let expected = Some(HalfMatch::must(0, 8));
2251    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2252    /// # Ok::<(), Box<dyn std::error::Error>>(())
2253    /// ```
2254    ///
2255    /// This padding is necessary because Rust's standard library does
2256    /// not expose any safe and robust way of creating a `Vec<u8>` with a
2257    /// guaranteed alignment other than 1. Now, in practice, the underlying
2258    /// allocator is likely to provide a `Vec<u8>` that meets our alignment
2259    /// requirements, which means `pad` is zero in practice most of the time.
2260    ///
2261    /// The purpose of exposing the padding like this is flexibility for the
2262    /// caller. For example, if one wants to embed a serialized DFA into a
2263    /// compiled program, then it's important to guarantee that it starts at a
2264    /// `u32`-aligned address. The simplest way to do this is to discard the
2265    /// padding bytes and set it up so that the serialized DFA itself begins at
2266    /// a properly aligned address. We can show this in two parts. The first
2267    /// part is serializing the DFA to a file:
2268    ///
2269    /// ```no_run
2270    /// use regex_automata::dfa::dense::DFA;
2271    ///
2272    /// let dfa = DFA::new("foo[0-9]+")?;
2273    ///
2274    /// let (bytes, pad) = dfa.to_bytes_big_endian();
2275    /// // Write the contents of the DFA *without* the initial padding.
2276    /// std::fs::write("foo.bigendian.dfa", &bytes[pad..])?;
2277    ///
2278    /// // Do it again, but this time for little endian.
2279    /// let (bytes, pad) = dfa.to_bytes_little_endian();
2280    /// std::fs::write("foo.littleendian.dfa", &bytes[pad..])?;
2281    /// # Ok::<(), Box<dyn std::error::Error>>(())
2282    /// ```
2283    ///
2284    /// And now the second part is embedding the DFA into the compiled program
2285    /// and deserializing it at runtime on first use. We use conditional
2286    /// compilation to choose the correct endianness.
2287    ///
2288    /// ```no_run
2289    /// use regex_automata::{
2290    ///     dfa::{Automaton, dense::DFA},
2291    ///     util::{lazy::Lazy, wire::AlignAs},
2292    ///     HalfMatch, Input,
2293    /// };
2294    ///
2295    /// // This crate provides its own "lazy" type, kind of like
2296    /// // lazy_static! or once_cell::sync::Lazy. But it works in no-alloc
2297    /// // no-std environments and let's us write this using completely
2298    /// // safe code.
2299    /// static RE: Lazy<DFA<&'static [u32]>> = Lazy::new(|| {
2300    ///     # const _: &str = stringify! {
2301    ///     // This assignment is made possible (implicitly) via the
2302    ///     // CoerceUnsized trait. This is what guarantees that our
2303    ///     // bytes are stored in memory on a 4 byte boundary. You
2304    ///     // *must* do this or something equivalent for correct
2305    ///     // deserialization.
2306    ///     static ALIGNED: &AlignAs<[u8], u32> = &AlignAs {
2307    ///         _align: [],
2308    ///         #[cfg(target_endian = "big")]
2309    ///         bytes: *include_bytes!("foo.bigendian.dfa"),
2310    ///         #[cfg(target_endian = "little")]
2311    ///         bytes: *include_bytes!("foo.littleendian.dfa"),
2312    ///     };
2313    ///     # };
2314    ///     # static ALIGNED: &AlignAs<[u8], u32> = &AlignAs {
2315    ///     #     _align: [],
2316    ///     #     bytes: [],
2317    ///     # };
2318    ///
2319    ///     let (dfa, _) = DFA::from_bytes(&ALIGNED.bytes)
2320    ///         .expect("serialized DFA should be valid");
2321    ///     dfa
2322    /// });
2323    ///
2324    /// let expected = Ok(Some(HalfMatch::must(0, 8)));
2325    /// assert_eq!(expected, RE.try_search_fwd(&Input::new("foo12345")));
2326    /// ```
2327    ///
2328    /// An alternative to [`util::lazy::Lazy`](crate::util::lazy::Lazy)
2329    /// is [`lazy_static`](https://crates.io/crates/lazy_static) or
2330    /// [`once_cell`](https://crates.io/crates/once_cell), which provide
2331    /// stronger guarantees (like the initialization function only being
2332    /// executed once). And `once_cell` in particular provides a more
2333    /// expressive API. But a `Lazy` value from this crate is likely just fine
2334    /// in most circumstances.
2335    ///
2336    /// Note that regardless of which initialization method you use, you
2337    /// will still need to use the [`AlignAs`](crate::util::wire::AlignAs)
2338    /// trick above to force correct alignment, but this is safe to do and
2339    /// `from_bytes` will return an error if you get it wrong.
2340    pub fn from_bytes(
2341        slice: &'a [u8],
2342    ) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> {
2343        // SAFETY: This is safe because we validate the transition table, start
2344        // table, match states and accelerators below. If any validation fails,
2345        // then we return an error.
2346        let (dfa, nread) = unsafe { DFA::from_bytes_unchecked(slice)? };
2347        dfa.tt.validate(&dfa)?;
2348        dfa.st.validate(&dfa)?;
2349        dfa.ms.validate(&dfa)?;
2350        dfa.accels.validate()?;
2351        // N.B. dfa.special doesn't have a way to do unchecked deserialization,
2352        // so it has already been validated.
2353        for state in dfa.states() {
2354            // If the state is an accel state, then it must have a non-empty
2355            // accelerator.
2356            if dfa.is_accel_state(state.id()) {
2357                let index = dfa.accelerator_index(state.id());
2358                if index >= dfa.accels.len() {
2359                    return Err(DeserializeError::generic(
2360                        "found DFA state with invalid accelerator index",
2361                    ));
2362                }
2363                let needles = dfa.accels.needles(index);
2364                if !(1 <= needles.len() && needles.len() <= 3) {
2365                    return Err(DeserializeError::generic(
2366                        "accelerator needles has invalid length",
2367                    ));
2368                }
2369            }
2370        }
2371        Ok((dfa, nread))
2372    }
2373
2374    /// Deserialize a DFA with a specific state identifier representation in
2375    /// constant time by omitting the verification of the validity of the
2376    /// transition table and other data inside the DFA.
2377    ///
2378    /// This is just like [`DFA::from_bytes`], except it can potentially return
2379    /// a DFA that exhibits undefined behavior if its transition table contains
2380    /// invalid state identifiers.
2381    ///
2382    /// This routine is useful if you need to deserialize a DFA cheaply
2383    /// and cannot afford the transition table validation performed by
2384    /// `from_bytes`.
2385    ///
2386    /// # Example
2387    ///
2388    /// ```
2389    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2390    ///
2391    /// let initial = DFA::new("foo[0-9]+")?;
2392    /// let (bytes, _) = initial.to_bytes_native_endian();
2393    /// // SAFETY: This is guaranteed to be safe since the bytes given come
2394    /// // directly from a compatible serialization routine.
2395    /// let dfa: DFA<&[u32]> = unsafe { DFA::from_bytes_unchecked(&bytes)?.0 };
2396    ///
2397    /// let expected = Some(HalfMatch::must(0, 8));
2398    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2399    /// # Ok::<(), Box<dyn std::error::Error>>(())
2400    /// ```
2401    pub unsafe fn from_bytes_unchecked(
2402        slice: &'a [u8],
2403    ) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> {
2404        let mut nr = 0;
2405
2406        nr += wire::skip_initial_padding(slice);
2407        wire::check_alignment::<StateID>(&slice[nr..])?;
2408        nr += wire::read_label(&slice[nr..], LABEL)?;
2409        nr += wire::read_endianness_check(&slice[nr..])?;
2410        nr += wire::read_version(&slice[nr..], VERSION)?;
2411
2412        let _unused = wire::try_read_u32(&slice[nr..], "unused space")?;
2413        nr += size_of::<u32>();
2414
2415        let (flags, nread) = Flags::from_bytes(&slice[nr..])?;
2416        nr += nread;
2417
2418        let (tt, nread) = TransitionTable::from_bytes_unchecked(&slice[nr..])?;
2419        nr += nread;
2420
2421        let (st, nread) = StartTable::from_bytes_unchecked(&slice[nr..])?;
2422        nr += nread;
2423
2424        let (ms, nread) = MatchStates::from_bytes_unchecked(&slice[nr..])?;
2425        nr += nread;
2426
2427        let (special, nread) = Special::from_bytes(&slice[nr..])?;
2428        nr += nread;
2429        special.validate_state_len(tt.len(), tt.stride2)?;
2430
2431        let (accels, nread) = Accels::from_bytes_unchecked(&slice[nr..])?;
2432        nr += nread;
2433
2434        let (quitset, nread) = ByteSet::from_bytes(&slice[nr..])?;
2435        nr += nread;
2436
2437        // Prefilters don't support serialization, so they're always absent.
2438        let pre = None;
2439        Ok((DFA { tt, st, ms, special, accels, pre, quitset, flags }, nr))
2440    }
2441
2442    /// The implementation of the public `write_to` serialization methods,
2443    /// which is generic over endianness.
2444    ///
2445    /// This is defined only for &[u32] to reduce binary size/compilation time.
2446    fn write_to<E: Endian>(
2447        &self,
2448        mut dst: &mut [u8],
2449    ) -> Result<usize, SerializeError> {
2450        let nwrite = self.write_to_len();
2451        if dst.len() < nwrite {
2452            return Err(SerializeError::buffer_too_small("dense DFA"));
2453        }
2454        dst = &mut dst[..nwrite];
2455
2456        let mut nw = 0;
2457        nw += wire::write_label(LABEL, &mut dst[nw..])?;
2458        nw += wire::write_endianness_check::<E>(&mut dst[nw..])?;
2459        nw += wire::write_version::<E>(VERSION, &mut dst[nw..])?;
2460        nw += {
2461            // Currently unused, intended for future flexibility
2462            E::write_u32(0, &mut dst[nw..]);
2463            size_of::<u32>()
2464        };
2465        nw += self.flags.write_to::<E>(&mut dst[nw..])?;
2466        nw += self.tt.write_to::<E>(&mut dst[nw..])?;
2467        nw += self.st.write_to::<E>(&mut dst[nw..])?;
2468        nw += self.ms.write_to::<E>(&mut dst[nw..])?;
2469        nw += self.special.write_to::<E>(&mut dst[nw..])?;
2470        nw += self.accels.write_to::<E>(&mut dst[nw..])?;
2471        nw += self.quitset.write_to::<E>(&mut dst[nw..])?;
2472        Ok(nw)
2473    }
2474}
2475
2476/// Other routines that work for all `T`.
2477impl<T> DFA<T> {
2478    /// Set or unset the prefilter attached to this DFA.
2479    ///
2480    /// This is useful when one has deserialized a DFA from `&[u8]`.
2481    /// Deserialization does not currently include prefilters, so if you
2482    /// want prefilter acceleration, you'll need to rebuild it and attach
2483    /// it here.
2484    pub fn set_prefilter(&mut self, prefilter: Option<Prefilter>) {
2485        self.pre = prefilter
2486    }
2487}
2488
2489// The following methods implement mutable routines on the internal
2490// representation of a DFA. As such, we must fix the first type parameter to a
2491// `Vec<u32>` since a generic `T: AsRef<[u32]>` does not permit mutation. We
2492// can get away with this because these methods are internal to the crate and
2493// are exclusively used during construction of the DFA.
2494#[cfg(feature = "dfa-build")]
2495impl OwnedDFA {
2496    /// Add a start state of this DFA.
2497    pub(crate) fn set_start_state(
2498        &mut self,
2499        anchored: Anchored,
2500        start: Start,
2501        id: StateID,
2502    ) {
2503        assert!(self.tt.is_valid(id), "invalid start state");
2504        self.st.set_start(anchored, start, id);
2505    }
2506
2507    /// Set the given transition to this DFA. Both the `from` and `to` states
2508    /// must already exist.
2509    pub(crate) fn set_transition(
2510        &mut self,
2511        from: StateID,
2512        byte: alphabet::Unit,
2513        to: StateID,
2514    ) {
2515        self.tt.set(from, byte, to);
2516    }
2517
2518    /// An empty state (a state where all transitions lead to a dead state)
2519    /// and return its identifier. The identifier returned is guaranteed to
2520    /// not point to any other existing state.
2521    ///
2522    /// If adding a state would exceed `StateID::LIMIT`, then this returns an
2523    /// error.
2524    pub(crate) fn add_empty_state(&mut self) -> Result<StateID, BuildError> {
2525        self.tt.add_empty_state()
2526    }
2527
2528    /// Swap the two states given in the transition table.
2529    ///
2530    /// This routine does not do anything to check the correctness of this
2531    /// swap. Callers must ensure that other states pointing to id1 and id2 are
2532    /// updated appropriately.
2533    pub(crate) fn swap_states(&mut self, id1: StateID, id2: StateID) {
2534        self.tt.swap(id1, id2);
2535    }
2536
2537    /// Remap all of the state identifiers in this DFA according to the map
2538    /// function given. This includes all transitions and all starting state
2539    /// identifiers.
2540    pub(crate) fn remap(&mut self, map: impl Fn(StateID) -> StateID) {
2541        // We could loop over each state ID and call 'remap_state' here, but
2542        // this is more direct: just map every transition directly. This
2543        // technically might do a little extra work since the alphabet length
2544        // is likely less than the stride, but if that is indeed an issue we
2545        // should benchmark it and fix it.
2546        for sid in self.tt.table_mut().iter_mut() {
2547            *sid = map(*sid);
2548        }
2549        for sid in self.st.table_mut().iter_mut() {
2550            *sid = map(*sid);
2551        }
2552    }
2553
2554    /// Remap the transitions for the state given according to the function
2555    /// given. This applies the given map function to every transition in the
2556    /// given state and changes the transition in place to the result of the
2557    /// map function for that transition.
2558    pub(crate) fn remap_state(
2559        &mut self,
2560        id: StateID,
2561        map: impl Fn(StateID) -> StateID,
2562    ) {
2563        self.tt.remap(id, map);
2564    }
2565
2566    /// Truncate the states in this DFA to the given length.
2567    ///
2568    /// This routine does not do anything to check the correctness of this
2569    /// truncation. Callers must ensure that other states pointing to truncated
2570    /// states are updated appropriately.
2571    pub(crate) fn truncate_states(&mut self, len: usize) {
2572        self.tt.truncate(len);
2573    }
2574
2575    /// Minimize this DFA in place using Hopcroft's algorithm.
2576    pub(crate) fn minimize(&mut self) {
2577        Minimizer::new(self).run();
2578    }
2579
2580    /// Updates the match state pattern ID map to use the one provided.
2581    ///
2582    /// This is useful when it's convenient to manipulate matching states
2583    /// (and their corresponding pattern IDs) as a map. In particular, the
2584    /// representation used by a DFA for this map is not amenable to mutation,
2585    /// so if things need to be changed (like when shuffling states), it's
2586    /// often easier to work with the map form.
2587    pub(crate) fn set_pattern_map(
2588        &mut self,
2589        map: &BTreeMap<StateID, Vec<PatternID>>,
2590    ) -> Result<(), BuildError> {
2591        self.ms = self.ms.new_with_map(map)?;
2592        Ok(())
2593    }
2594
2595    /// Find states that have a small number of non-loop transitions and mark
2596    /// them as candidates for acceleration during search.
2597    pub(crate) fn accelerate(&mut self) {
2598        // dead and quit states can never be accelerated.
2599        if self.state_len() <= 2 {
2600            return;
2601        }
2602
2603        // Go through every state and record their accelerator, if possible.
2604        let mut accels = BTreeMap::new();
2605        // Count the number of accelerated match, start and non-match/start
2606        // states.
2607        let (mut cmatch, mut cstart, mut cnormal) = (0, 0, 0);
2608        for state in self.states() {
2609            if let Some(accel) = state.accelerate(self.byte_classes()) {
2610                debug!(
2611                    "accelerating full DFA state {}: {:?}",
2612                    state.id().as_usize(),
2613                    accel,
2614                );
2615                accels.insert(state.id(), accel);
2616                if self.is_match_state(state.id()) {
2617                    cmatch += 1;
2618                } else if self.is_start_state(state.id()) {
2619                    cstart += 1;
2620                } else {
2621                    assert!(!self.is_dead_state(state.id()));
2622                    assert!(!self.is_quit_state(state.id()));
2623                    cnormal += 1;
2624                }
2625            }
2626        }
2627        // If no states were able to be accelerated, then we're done.
2628        if accels.is_empty() {
2629            return;
2630        }
2631        let original_accels_len = accels.len();
2632
2633        // A remapper keeps track of state ID changes. Once we're done
2634        // shuffling, the remapper is used to rewrite all transitions in the
2635        // DFA based on the new positions of states.
2636        let mut remapper = Remapper::new(self);
2637
2638        // As we swap states, if they are match states, we need to swap their
2639        // pattern ID lists too (for multi-regexes). We do this by converting
2640        // the lists to an easily swappable map, and then convert back to
2641        // MatchStates once we're done.
2642        let mut new_matches = self.ms.to_map(self);
2643
2644        // There is at least one state that gets accelerated, so these are
2645        // guaranteed to get set to sensible values below.
2646        self.special.min_accel = StateID::MAX;
2647        self.special.max_accel = StateID::ZERO;
2648        let update_special_accel =
2649            |special: &mut Special, accel_id: StateID| {
2650                special.min_accel = cmp::min(special.min_accel, accel_id);
2651                special.max_accel = cmp::max(special.max_accel, accel_id);
2652            };
2653
2654        // Start by shuffling match states. Any match states that are
2655        // accelerated get moved to the end of the match state range.
2656        if cmatch > 0 && self.special.matches() {
2657            // N.B. special.{min,max}_match do not need updating, since the
2658            // range/number of match states does not change. Only the ordering
2659            // of match states may change.
2660            let mut next_id = self.special.max_match;
2661            let mut cur_id = next_id;
2662            while cur_id >= self.special.min_match {
2663                if let Some(accel) = accels.remove(&cur_id) {
2664                    accels.insert(next_id, accel);
2665                    update_special_accel(&mut self.special, next_id);
2666
2667                    // No need to do any actual swapping for equivalent IDs.
2668                    if cur_id != next_id {
2669                        remapper.swap(self, cur_id, next_id);
2670
2671                        // Swap pattern IDs for match states.
2672                        let cur_pids = new_matches.remove(&cur_id).unwrap();
2673                        let next_pids = new_matches.remove(&next_id).unwrap();
2674                        new_matches.insert(cur_id, next_pids);
2675                        new_matches.insert(next_id, cur_pids);
2676                    }
2677                    next_id = self.tt.prev_state_id(next_id);
2678                }
2679                cur_id = self.tt.prev_state_id(cur_id);
2680            }
2681        }
2682
2683        // This is where it gets tricky. Without acceleration, start states
2684        // normally come right after match states. But we want accelerated
2685        // states to be a single contiguous range (to make it very fast
2686        // to determine whether a state *is* accelerated), while also keeping
2687        // match and starting states as contiguous ranges for the same reason.
2688        // So what we do here is shuffle states such that it looks like this:
2689        //
2690        //     DQMMMMAAAAASSSSSSNNNNNNN
2691        //         |         |
2692        //         |---------|
2693        //      accelerated states
2694        //
2695        // Where:
2696        //   D - dead state
2697        //   Q - quit state
2698        //   M - match state (may be accelerated)
2699        //   A - normal state that is accelerated
2700        //   S - start state (may be accelerated)
2701        //   N - normal state that is NOT accelerated
2702        //
2703        // We implement this by shuffling states, which is done by a sequence
2704        // of pairwise swaps. We start by looking at all normal states to be
2705        // accelerated. When we find one, we swap it with the earliest starting
2706        // state, and then swap that with the earliest normal state. This
2707        // preserves the contiguous property.
2708        //
2709        // Once we're done looking for accelerated normal states, now we look
2710        // for accelerated starting states by moving them to the beginning
2711        // of the starting state range (just like we moved accelerated match
2712        // states to the end of the matching state range).
2713        //
2714        // For a more detailed/different perspective on this, see the docs
2715        // in dfa/special.rs.
2716        if cnormal > 0 {
2717            // our next available starting and normal states for swapping.
2718            let mut next_start_id = self.special.min_start;
2719            let mut cur_id = self.to_state_id(self.state_len() - 1);
2720            // This is guaranteed to exist since cnormal > 0.
2721            let mut next_norm_id =
2722                self.tt.next_state_id(self.special.max_start);
2723            while cur_id >= next_norm_id {
2724                if let Some(accel) = accels.remove(&cur_id) {
2725                    remapper.swap(self, next_start_id, cur_id);
2726                    remapper.swap(self, next_norm_id, cur_id);
2727                    // Keep our accelerator map updated with new IDs if the
2728                    // states we swapped were also accelerated.
2729                    if let Some(accel2) = accels.remove(&next_norm_id) {
2730                        accels.insert(cur_id, accel2);
2731                    }
2732                    if let Some(accel2) = accels.remove(&next_start_id) {
2733                        accels.insert(next_norm_id, accel2);
2734                    }
2735                    accels.insert(next_start_id, accel);
2736                    update_special_accel(&mut self.special, next_start_id);
2737                    // Our start range shifts one to the right now.
2738                    self.special.min_start =
2739                        self.tt.next_state_id(self.special.min_start);
2740                    self.special.max_start =
2741                        self.tt.next_state_id(self.special.max_start);
2742                    next_start_id = self.tt.next_state_id(next_start_id);
2743                    next_norm_id = self.tt.next_state_id(next_norm_id);
2744                }
2745                // This is pretty tricky, but if our 'next_norm_id' state also
2746                // happened to be accelerated, then the result is that it is
2747                // now in the position of cur_id, so we need to consider it
2748                // again. This loop is still guaranteed to terminate though,
2749                // because when accels contains cur_id, we're guaranteed to
2750                // increment next_norm_id even if cur_id remains unchanged.
2751                if !accels.contains_key(&cur_id) {
2752                    cur_id = self.tt.prev_state_id(cur_id);
2753                }
2754            }
2755        }
2756        // Just like we did for match states, but we want to move accelerated
2757        // start states to the beginning of the range instead of the end.
2758        if cstart > 0 {
2759            // N.B. special.{min,max}_start do not need updating, since the
2760            // range/number of start states does not change at this point. Only
2761            // the ordering of start states may change.
2762            let mut next_id = self.special.min_start;
2763            let mut cur_id = next_id;
2764            while cur_id <= self.special.max_start {
2765                if let Some(accel) = accels.remove(&cur_id) {
2766                    remapper.swap(self, cur_id, next_id);
2767                    accels.insert(next_id, accel);
2768                    update_special_accel(&mut self.special, next_id);
2769                    next_id = self.tt.next_state_id(next_id);
2770                }
2771                cur_id = self.tt.next_state_id(cur_id);
2772            }
2773        }
2774
2775        // Remap all transitions in our DFA and assert some things.
2776        remapper.remap(self);
2777        // This unwrap is OK because acceleration never changes the number of
2778        // match states or patterns in those match states. Since acceleration
2779        // runs after the pattern map has been set at least once, we know that
2780        // our match states cannot error.
2781        self.set_pattern_map(&new_matches).unwrap();
2782        self.special.set_max();
2783        self.special.validate().expect("special state ranges should validate");
2784        self.special
2785            .validate_state_len(self.state_len(), self.stride2())
2786            .expect(
2787                "special state ranges should be consistent with state length",
2788            );
2789        assert_eq!(
2790            self.special.accel_len(self.stride()),
2791            // We record the number of accelerated states initially detected
2792            // since the accels map is itself mutated in the process above.
2793            // If mutated incorrectly, its size may change, and thus can't be
2794            // trusted as a source of truth of how many accelerated states we
2795            // expected there to be.
2796            original_accels_len,
2797            "mismatch with expected number of accelerated states",
2798        );
2799
2800        // And finally record our accelerators. We kept our accels map updated
2801        // as we shuffled states above, so the accelerators should now
2802        // correspond to a contiguous range in the state ID space. (Which we
2803        // assert.)
2804        let mut prev: Option<StateID> = None;
2805        for (id, accel) in accels {
2806            assert!(prev.map_or(true, |p| self.tt.next_state_id(p) == id));
2807            prev = Some(id);
2808            self.accels.add(accel);
2809        }
2810    }
2811
2812    /// Shuffle the states in this DFA so that starting states, match
2813    /// states and accelerated states are all contiguous.
2814    ///
2815    /// See dfa/special.rs for more details.
2816    pub(crate) fn shuffle(
2817        &mut self,
2818        mut matches: BTreeMap<StateID, Vec<PatternID>>,
2819    ) -> Result<(), BuildError> {
2820        // The determinizer always adds a quit state and it is always second.
2821        self.special.quit_id = self.to_state_id(1);
2822        // If all we have are the dead and quit states, then we're done and
2823        // the DFA will never produce a match.
2824        if self.state_len() <= 2 {
2825            self.special.set_max();
2826            return Ok(());
2827        }
2828
2829        // Collect all our non-DEAD start states into a convenient set and
2830        // confirm there is no overlap with match states. In the classical DFA
2831        // construction, start states can be match states. But because of
2832        // look-around, we delay all matches by a byte, which prevents start
2833        // states from being match states.
2834        let mut is_start: BTreeSet<StateID> = BTreeSet::new();
2835        for (start_id, _, _) in self.starts() {
2836            // If a starting configuration points to a DEAD state, then we
2837            // don't want to shuffle it. The DEAD state is always the first
2838            // state with ID=0. So we can just leave it be.
2839            if start_id == DEAD {
2840                continue;
2841            }
2842            assert!(
2843                !matches.contains_key(&start_id),
2844                "{start_id:?} is both a start and a match state, \
2845                 which is not allowed",
2846            );
2847            is_start.insert(start_id);
2848        }
2849
2850        // We implement shuffling by a sequence of pairwise swaps of states.
2851        // Since we have a number of things referencing states via their
2852        // IDs and swapping them changes their IDs, we need to record every
2853        // swap we make so that we can remap IDs. The remapper handles this
2854        // book-keeping for us.
2855        let mut remapper = Remapper::new(self);
2856
2857        // Shuffle matching states.
2858        if matches.is_empty() {
2859            self.special.min_match = DEAD;
2860            self.special.max_match = DEAD;
2861        } else {
2862            // The determinizer guarantees that the first two states are the
2863            // dead and quit states, respectively. We want our match states to
2864            // come right after quit.
2865            let mut next_id = self.to_state_id(2);
2866            let mut new_matches = BTreeMap::new();
2867            self.special.min_match = next_id;
2868            for (id, pids) in matches {
2869                remapper.swap(self, next_id, id);
2870                new_matches.insert(next_id, pids);
2871                // If we swapped a start state, then update our set.
2872                if is_start.contains(&next_id) {
2873                    is_start.remove(&next_id);
2874                    is_start.insert(id);
2875                }
2876                next_id = self.tt.next_state_id(next_id);
2877            }
2878            matches = new_matches;
2879            self.special.max_match = cmp::max(
2880                self.special.min_match,
2881                self.tt.prev_state_id(next_id),
2882            );
2883        }
2884
2885        // Shuffle starting states.
2886        {
2887            let mut next_id = self.to_state_id(2);
2888            if self.special.matches() {
2889                next_id = self.tt.next_state_id(self.special.max_match);
2890            }
2891            self.special.min_start = next_id;
2892            for id in is_start {
2893                remapper.swap(self, next_id, id);
2894                next_id = self.tt.next_state_id(next_id);
2895            }
2896            self.special.max_start = cmp::max(
2897                self.special.min_start,
2898                self.tt.prev_state_id(next_id),
2899            );
2900        }
2901
2902        // Finally remap all transitions in our DFA.
2903        remapper.remap(self);
2904        self.set_pattern_map(&matches)?;
2905        self.special.set_max();
2906        self.special.validate().expect("special state ranges should validate");
2907        self.special
2908            .validate_state_len(self.state_len(), self.stride2())
2909            .expect(
2910                "special state ranges should be consistent with state length",
2911            );
2912        Ok(())
2913    }
2914
2915    /// Checks whether there are universal start states (both anchored and
2916    /// unanchored), and if so, sets the relevant fields to the start state
2917    /// IDs.
2918    ///
2919    /// Universal start states occur precisely when the all patterns in the
2920    /// DFA have no look-around assertions in their prefix.
2921    fn set_universal_starts(&mut self) {
2922        assert_eq!(6, Start::len(), "expected 6 start configurations");
2923
2924        let start_id = |dfa: &mut OwnedDFA,
2925                        anchored: Anchored,
2926                        start: Start| {
2927            // This OK because we only call 'start' under conditions
2928            // in which we know it will succeed.
2929            dfa.st.start(anchored, start).expect("valid Input configuration")
2930        };
2931        if self.start_kind().has_unanchored() {
2932            let anchor = Anchored::No;
2933            let sid = start_id(self, anchor, Start::NonWordByte);
2934            if sid == start_id(self, anchor, Start::WordByte)
2935                && sid == start_id(self, anchor, Start::Text)
2936                && sid == start_id(self, anchor, Start::LineLF)
2937                && sid == start_id(self, anchor, Start::LineCR)
2938                && sid == start_id(self, anchor, Start::CustomLineTerminator)
2939            {
2940                self.st.universal_start_unanchored = Some(sid);
2941            }
2942        }
2943        if self.start_kind().has_anchored() {
2944            let anchor = Anchored::Yes;
2945            let sid = start_id(self, anchor, Start::NonWordByte);
2946            if sid == start_id(self, anchor, Start::WordByte)
2947                && sid == start_id(self, anchor, Start::Text)
2948                && sid == start_id(self, anchor, Start::LineLF)
2949                && sid == start_id(self, anchor, Start::LineCR)
2950                && sid == start_id(self, anchor, Start::CustomLineTerminator)
2951            {
2952                self.st.universal_start_anchored = Some(sid);
2953            }
2954        }
2955    }
2956}
2957
2958// A variety of generic internal methods for accessing DFA internals.
2959impl<T: AsRef<[u32]>> DFA<T> {
2960    /// Return the info about special states.
2961    pub(crate) fn special(&self) -> &Special {
2962        &self.special
2963    }
2964
2965    /// Return the info about special states as a mutable borrow.
2966    #[cfg(feature = "dfa-build")]
2967    pub(crate) fn special_mut(&mut self) -> &mut Special {
2968        &mut self.special
2969    }
2970
2971    /// Returns the quit set (may be empty) used by this DFA.
2972    pub(crate) fn quitset(&self) -> &ByteSet {
2973        &self.quitset
2974    }
2975
2976    /// Returns the flags for this DFA.
2977    pub(crate) fn flags(&self) -> &Flags {
2978        &self.flags
2979    }
2980
2981    /// Returns an iterator over all states in this DFA.
2982    ///
2983    /// This iterator yields a tuple for each state. The first element of the
2984    /// tuple corresponds to a state's identifier, and the second element
2985    /// corresponds to the state itself (comprised of its transitions).
2986    pub(crate) fn states(&self) -> StateIter<'_, T> {
2987        self.tt.states()
2988    }
2989
2990    /// Return the total number of states in this DFA. Every DFA has at least
2991    /// 1 state, even the empty DFA.
2992    pub(crate) fn state_len(&self) -> usize {
2993        self.tt.len()
2994    }
2995
2996    /// Return an iterator over all pattern IDs for the given match state.
2997    ///
2998    /// If the given state is not a match state, then this panics.
2999    #[cfg(feature = "dfa-build")]
3000    pub(crate) fn pattern_id_slice(&self, id: StateID) -> &[PatternID] {
3001        assert!(self.is_match_state(id));
3002        self.ms.pattern_id_slice(self.match_state_index(id))
3003    }
3004
3005    /// Return the total number of pattern IDs for the given match state.
3006    ///
3007    /// If the given state is not a match state, then this panics.
3008    pub(crate) fn match_pattern_len(&self, id: StateID) -> usize {
3009        assert!(self.is_match_state(id));
3010        self.ms.pattern_len(self.match_state_index(id))
3011    }
3012
3013    /// Returns the total number of patterns matched by this DFA.
3014    pub(crate) fn pattern_len(&self) -> usize {
3015        self.ms.pattern_len
3016    }
3017
3018    /// Returns a map from match state ID to a list of pattern IDs that match
3019    /// in that state.
3020    #[cfg(feature = "dfa-build")]
3021    pub(crate) fn pattern_map(&self) -> BTreeMap<StateID, Vec<PatternID>> {
3022        self.ms.to_map(self)
3023    }
3024
3025    /// Returns the ID of the quit state for this DFA.
3026    #[cfg(feature = "dfa-build")]
3027    pub(crate) fn quit_id(&self) -> StateID {
3028        self.to_state_id(1)
3029    }
3030
3031    /// Convert the given state identifier to the state's index. The state's
3032    /// index corresponds to the position in which it appears in the transition
3033    /// table. When a DFA is NOT premultiplied, then a state's identifier is
3034    /// also its index. When a DFA is premultiplied, then a state's identifier
3035    /// is equal to `index * alphabet_len`. This routine reverses that.
3036    pub(crate) fn to_index(&self, id: StateID) -> usize {
3037        self.tt.to_index(id)
3038    }
3039
3040    /// Convert an index to a state (in the range 0..self.state_len()) to an
3041    /// actual state identifier.
3042    ///
3043    /// This is useful when using a `Vec<T>` as an efficient map keyed by state
3044    /// to some other information (such as a remapped state ID).
3045    #[cfg(feature = "dfa-build")]
3046    pub(crate) fn to_state_id(&self, index: usize) -> StateID {
3047        self.tt.to_state_id(index)
3048    }
3049
3050    /// Return the table of state IDs for this DFA's start states.
3051    pub(crate) fn starts(&self) -> StartStateIter<'_> {
3052        self.st.iter()
3053    }
3054
3055    /// Returns the index of the match state for the given ID. If the
3056    /// given ID does not correspond to a match state, then this may
3057    /// panic or produce an incorrect result.
3058    #[cfg_attr(feature = "perf-inline", inline(always))]
3059    fn match_state_index(&self, id: StateID) -> usize {
3060        debug_assert!(self.is_match_state(id));
3061        // This is one of the places where we rely on the fact that match
3062        // states are contiguous in the transition table. Namely, that the
3063        // first match state ID always corresponds to dfa.special.min_match.
3064        // From there, since we know the stride, we can compute the overall
3065        // index of any match state given the match state's ID.
3066        let min = self.special().min_match.as_usize();
3067        // CORRECTNESS: We're allowed to produce an incorrect result or panic,
3068        // so both the subtraction and the unchecked StateID construction is
3069        // OK.
3070        self.to_index(StateID::new_unchecked(id.as_usize() - min))
3071    }
3072
3073    /// Returns the index of the accelerator state for the given ID. If the
3074    /// given ID does not correspond to an accelerator state, then this may
3075    /// panic or produce an incorrect result.
3076    fn accelerator_index(&self, id: StateID) -> usize {
3077        let min = self.special().min_accel.as_usize();
3078        // CORRECTNESS: We're allowed to produce an incorrect result or panic,
3079        // so both the subtraction and the unchecked StateID construction is
3080        // OK.
3081        self.to_index(StateID::new_unchecked(id.as_usize() - min))
3082    }
3083
3084    /// Return the accelerators for this DFA.
3085    fn accels(&self) -> Accels<&[u32]> {
3086        self.accels.as_ref()
3087    }
3088
3089    /// Return this DFA's transition table as a slice.
3090    fn trans(&self) -> &[StateID] {
3091        self.tt.table()
3092    }
3093}
3094
3095impl<T: AsRef<[u32]>> fmt::Debug for DFA<T> {
3096    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3097        writeln!(f, "dense::DFA(")?;
3098        for state in self.states() {
3099            fmt_state_indicator(f, self, state.id())?;
3100            let id = if f.alternate() {
3101                state.id().as_usize()
3102            } else {
3103                self.to_index(state.id())
3104            };
3105            write!(f, "{id:06?}: ")?;
3106            state.fmt(f)?;
3107            write!(f, "\n")?;
3108        }
3109        writeln!(f, "")?;
3110        for (i, (start_id, anchored, sty)) in self.starts().enumerate() {
3111            let id = if f.alternate() {
3112                start_id.as_usize()
3113            } else {
3114                self.to_index(start_id)
3115            };
3116            if i % self.st.stride == 0 {
3117                match anchored {
3118                    Anchored::No => writeln!(f, "START-GROUP(unanchored)")?,
3119                    Anchored::Yes => writeln!(f, "START-GROUP(anchored)")?,
3120                    Anchored::Pattern(pid) => {
3121                        writeln!(f, "START_GROUP(pattern: {pid:?})")?
3122                    }
3123                }
3124            }
3125            writeln!(f, "  {sty:?} => {id:06?}")?;
3126        }
3127        if self.pattern_len() > 1 {
3128            writeln!(f, "")?;
3129            for i in 0..self.ms.len() {
3130                let id = self.ms.match_state_id(self, i);
3131                let id = if f.alternate() {
3132                    id.as_usize()
3133                } else {
3134                    self.to_index(id)
3135                };
3136                write!(f, "MATCH({id:06?}): ")?;
3137                for (i, &pid) in self.ms.pattern_id_slice(i).iter().enumerate()
3138                {
3139                    if i > 0 {
3140                        write!(f, ", ")?;
3141                    }
3142                    write!(f, "{pid:?}")?;
3143                }
3144                writeln!(f, "")?;
3145            }
3146        }
3147        writeln!(f, "state length: {:?}", self.state_len())?;
3148        writeln!(f, "pattern length: {:?}", self.pattern_len())?;
3149        writeln!(f, "flags: {:?}", self.flags)?;
3150        writeln!(f, ")")?;
3151        Ok(())
3152    }
3153}
3154
3155// SAFETY: We assert that our implementation of each method is correct.
3156unsafe impl<T: AsRef<[u32]>> Automaton for DFA<T> {
3157    #[cfg_attr(feature = "perf-inline", inline(always))]
3158    fn is_special_state(&self, id: StateID) -> bool {
3159        self.special.is_special_state(id)
3160    }
3161
3162    #[cfg_attr(feature = "perf-inline", inline(always))]
3163    fn is_dead_state(&self, id: StateID) -> bool {
3164        self.special.is_dead_state(id)
3165    }
3166
3167    #[cfg_attr(feature = "perf-inline", inline(always))]
3168    fn is_quit_state(&self, id: StateID) -> bool {
3169        self.special.is_quit_state(id)
3170    }
3171
3172    #[cfg_attr(feature = "perf-inline", inline(always))]
3173    fn is_match_state(&self, id: StateID) -> bool {
3174        self.special.is_match_state(id)
3175    }
3176
3177    #[cfg_attr(feature = "perf-inline", inline(always))]
3178    fn is_start_state(&self, id: StateID) -> bool {
3179        self.special.is_start_state(id)
3180    }
3181
3182    #[cfg_attr(feature = "perf-inline", inline(always))]
3183    fn is_accel_state(&self, id: StateID) -> bool {
3184        self.special.is_accel_state(id)
3185    }
3186
3187    #[cfg_attr(feature = "perf-inline", inline(always))]
3188    fn next_state(&self, current: StateID, input: u8) -> StateID {
3189        let input = self.byte_classes().get(input);
3190        let o = current.as_usize() + usize::from(input);
3191        self.trans()[o]
3192    }
3193
3194    #[cfg_attr(feature = "perf-inline", inline(always))]
3195    unsafe fn next_state_unchecked(
3196        &self,
3197        current: StateID,
3198        byte: u8,
3199    ) -> StateID {
3200        // We don't (or shouldn't) need an unchecked variant for the byte
3201        // class mapping, since bound checks should be omitted automatically
3202        // by virtue of its representation. If this ends up not being true as
3203        // confirmed by codegen, please file an issue. ---AG
3204        let class = self.byte_classes().get(byte);
3205        let o = current.as_usize() + usize::from(class);
3206        let next = *self.trans().get_unchecked(o);
3207        next
3208    }
3209
3210    #[cfg_attr(feature = "perf-inline", inline(always))]
3211    fn next_eoi_state(&self, current: StateID) -> StateID {
3212        let eoi = self.byte_classes().eoi().as_usize();
3213        let o = current.as_usize() + eoi;
3214        self.trans()[o]
3215    }
3216
3217    #[cfg_attr(feature = "perf-inline", inline(always))]
3218    fn pattern_len(&self) -> usize {
3219        self.ms.pattern_len
3220    }
3221
3222    #[cfg_attr(feature = "perf-inline", inline(always))]
3223    fn match_len(&self, id: StateID) -> usize {
3224        self.match_pattern_len(id)
3225    }
3226
3227    #[cfg_attr(feature = "perf-inline", inline(always))]
3228    fn match_pattern(&self, id: StateID, match_index: usize) -> PatternID {
3229        // This is an optimization for the very common case of a DFA with a
3230        // single pattern. This conditional avoids a somewhat more costly path
3231        // that finds the pattern ID from the state machine, which requires
3232        // a bit of slicing/pointer-chasing. This optimization tends to only
3233        // matter when matches are frequent.
3234        if self.ms.pattern_len == 1 {
3235            return PatternID::ZERO;
3236        }
3237        let state_index = self.match_state_index(id);
3238        self.ms.pattern_id(state_index, match_index)
3239    }
3240
3241    #[cfg_attr(feature = "perf-inline", inline(always))]
3242    fn has_empty(&self) -> bool {
3243        self.flags.has_empty
3244    }
3245
3246    #[cfg_attr(feature = "perf-inline", inline(always))]
3247    fn is_utf8(&self) -> bool {
3248        self.flags.is_utf8
3249    }
3250
3251    #[cfg_attr(feature = "perf-inline", inline(always))]
3252    fn is_always_start_anchored(&self) -> bool {
3253        self.flags.is_always_start_anchored
3254    }
3255
3256    #[cfg_attr(feature = "perf-inline", inline(always))]
3257    fn start_state(
3258        &self,
3259        config: &start::Config,
3260    ) -> Result<StateID, StartError> {
3261        let anchored = config.get_anchored();
3262        let start = match config.get_look_behind() {
3263            None => Start::Text,
3264            Some(byte) => {
3265                if !self.quitset.is_empty() && self.quitset.contains(byte) {
3266                    return Err(StartError::quit(byte));
3267                }
3268                self.st.start_map.get(byte)
3269            }
3270        };
3271        self.st.start(anchored, start)
3272    }
3273
3274    #[cfg_attr(feature = "perf-inline", inline(always))]
3275    fn universal_start_state(&self, mode: Anchored) -> Option<StateID> {
3276        match mode {
3277            Anchored::No => self.st.universal_start_unanchored,
3278            Anchored::Yes => self.st.universal_start_anchored,
3279            Anchored::Pattern(_) => None,
3280        }
3281    }
3282
3283    #[cfg_attr(feature = "perf-inline", inline(always))]
3284    fn accelerator(&self, id: StateID) -> &[u8] {
3285        if !self.is_accel_state(id) {
3286            return &[];
3287        }
3288        self.accels.needles(self.accelerator_index(id))
3289    }
3290
3291    #[cfg_attr(feature = "perf-inline", inline(always))]
3292    fn get_prefilter(&self) -> Option<&Prefilter> {
3293        self.pre.as_ref()
3294    }
3295}
3296
3297/// The transition table portion of a dense DFA.
3298///
3299/// The transition table is the core part of the DFA in that it describes how
3300/// to move from one state to another based on the input sequence observed.
3301#[derive(Clone)]
3302pub(crate) struct TransitionTable<T> {
3303    /// A contiguous region of memory representing the transition table in
3304    /// row-major order. The representation is dense. That is, every state
3305    /// has precisely the same number of transitions. The maximum number of
3306    /// transitions per state is 257 (256 for each possible byte value, plus 1
3307    /// for the special EOI transition). If a DFA has been instructed to use
3308    /// byte classes (the default), then the number of transitions is usually
3309    /// substantially fewer.
3310    ///
3311    /// In practice, T is either `Vec<u32>` or `&[u32]`.
3312    table: T,
3313    /// A set of equivalence classes, where a single equivalence class
3314    /// represents a set of bytes that never discriminate between a match
3315    /// and a non-match in the DFA. Each equivalence class corresponds to a
3316    /// single character in this DFA's alphabet, where the maximum number of
3317    /// characters is 257 (each possible value of a byte plus the special
3318    /// EOI transition). Consequently, the number of equivalence classes
3319    /// corresponds to the number of transitions for each DFA state. Note
3320    /// though that the *space* used by each DFA state in the transition table
3321    /// may be larger. The total space used by each DFA state is known as the
3322    /// stride.
3323    ///
3324    /// The only time the number of equivalence classes is fewer than 257 is if
3325    /// the DFA's kind uses byte classes (which is the default). Equivalence
3326    /// classes should generally only be disabled when debugging, so that
3327    /// the transitions themselves aren't obscured. Disabling them has no
3328    /// other benefit, since the equivalence class map is always used while
3329    /// searching. In the vast majority of cases, the number of equivalence
3330    /// classes is substantially smaller than 257, particularly when large
3331    /// Unicode classes aren't used.
3332    classes: ByteClasses,
3333    /// The stride of each DFA state, expressed as a power-of-two exponent.
3334    ///
3335    /// The stride of a DFA corresponds to the total amount of space used by
3336    /// each DFA state in the transition table. This may be bigger than the
3337    /// size of a DFA's alphabet, since the stride is always the smallest
3338    /// power of two greater than or equal to the alphabet size.
3339    ///
3340    /// While this wastes space, this avoids the need for integer division
3341    /// to convert between premultiplied state IDs and their corresponding
3342    /// indices. Instead, we can use simple bit-shifts.
3343    ///
3344    /// See the docs for the `stride2` method for more details.
3345    ///
3346    /// The minimum `stride2` value is `1` (corresponding to a stride of `2`)
3347    /// while the maximum `stride2` value is `9` (corresponding to a stride of
3348    /// `512`). The maximum is not `8` since the maximum alphabet size is `257`
3349    /// when accounting for the special EOI transition. However, an alphabet
3350    /// length of that size is exceptionally rare since the alphabet is shrunk
3351    /// into equivalence classes.
3352    stride2: usize,
3353}
3354
3355impl<'a> TransitionTable<&'a [u32]> {
3356    /// Deserialize a transition table starting at the beginning of `slice`.
3357    /// Upon success, return the total number of bytes read along with the
3358    /// transition table.
3359    ///
3360    /// If there was a problem deserializing any part of the transition table,
3361    /// then this returns an error. Notably, if the given slice does not have
3362    /// the same alignment as `StateID`, then this will return an error (among
3363    /// other possible errors).
3364    ///
3365    /// This is guaranteed to execute in constant time.
3366    ///
3367    /// # Safety
3368    ///
3369    /// This routine is not safe because it does not check the validity of the
3370    /// transition table itself. In particular, the transition table can be
3371    /// quite large, so checking its validity can be somewhat expensive. An
3372    /// invalid transition table is not safe because other code may rely on the
3373    /// transition table being correct (such as explicit bounds check elision).
3374    /// Therefore, an invalid transition table can lead to undefined behavior.
3375    ///
3376    /// Callers that use this function must either pass on the safety invariant
3377    /// or guarantee that the bytes given contain a valid transition table.
3378    /// This guarantee is upheld by the bytes written by `write_to`.
3379    unsafe fn from_bytes_unchecked(
3380        mut slice: &'a [u8],
3381    ) -> Result<(TransitionTable<&'a [u32]>, usize), DeserializeError> {
3382        let slice_start = slice.as_ptr().as_usize();
3383
3384        let (state_len, nr) =
3385            wire::try_read_u32_as_usize(slice, "state length")?;
3386        slice = &slice[nr..];
3387
3388        let (stride2, nr) = wire::try_read_u32_as_usize(slice, "stride2")?;
3389        slice = &slice[nr..];
3390
3391        let (classes, nr) = ByteClasses::from_bytes(slice)?;
3392        slice = &slice[nr..];
3393
3394        // The alphabet length (determined by the byte class map) cannot be
3395        // bigger than the stride (total space used by each DFA state).
3396        if stride2 > 9 {
3397            return Err(DeserializeError::generic(
3398                "dense DFA has invalid stride2 (too big)",
3399            ));
3400        }
3401        // It also cannot be zero, since even a DFA that never matches anything
3402        // has a non-zero number of states with at least two equivalence
3403        // classes: one for all 256 byte values and another for the EOI
3404        // sentinel.
3405        if stride2 < 1 {
3406            return Err(DeserializeError::generic(
3407                "dense DFA has invalid stride2 (too small)",
3408            ));
3409        }
3410        // This is OK since 1 <= stride2 <= 9.
3411        let stride =
3412            1usize.checked_shl(u32::try_from(stride2).unwrap()).unwrap();
3413        if classes.alphabet_len() > stride {
3414            return Err(DeserializeError::generic(
3415                "alphabet size cannot be bigger than transition table stride",
3416            ));
3417        }
3418
3419        let trans_len =
3420            wire::shl(state_len, stride2, "dense table transition length")?;
3421        let table_bytes_len = wire::mul(
3422            trans_len,
3423            StateID::SIZE,
3424            "dense table state byte length",
3425        )?;
3426        wire::check_slice_len(slice, table_bytes_len, "transition table")?;
3427        wire::check_alignment::<StateID>(slice)?;
3428        let table_bytes = &slice[..table_bytes_len];
3429        slice = &slice[table_bytes_len..];
3430        // SAFETY: Since StateID is always representable as a u32, all we need
3431        // to do is ensure that we have the proper length and alignment. We've
3432        // checked both above, so the cast below is safe.
3433        //
3434        // N.B. This is the only not-safe code in this function.
3435        let table = core::slice::from_raw_parts(
3436            table_bytes.as_ptr().cast::<u32>(),
3437            trans_len,
3438        );
3439        let tt = TransitionTable { table, classes, stride2 };
3440        Ok((tt, slice.as_ptr().as_usize() - slice_start))
3441    }
3442}
3443
3444#[cfg(feature = "dfa-build")]
3445impl TransitionTable<Vec<u32>> {
3446    /// Create a minimal transition table with just two states: a dead state
3447    /// and a quit state. The alphabet length and stride of the transition
3448    /// table is determined by the given set of equivalence classes.
3449    fn minimal(classes: ByteClasses) -> TransitionTable<Vec<u32>> {
3450        let mut tt = TransitionTable {
3451            table: vec![],
3452            classes,
3453            stride2: classes.stride2(),
3454        };
3455        // Two states, regardless of alphabet size, can always fit into u32.
3456        tt.add_empty_state().unwrap(); // dead state
3457        tt.add_empty_state().unwrap(); // quit state
3458        tt
3459    }
3460
3461    /// Set a transition in this table. Both the `from` and `to` states must
3462    /// already exist, otherwise this panics. `unit` should correspond to the
3463    /// transition out of `from` to set to `to`.
3464    fn set(&mut self, from: StateID, unit: alphabet::Unit, to: StateID) {
3465        assert!(self.is_valid(from), "invalid 'from' state");
3466        assert!(self.is_valid(to), "invalid 'to' state");
3467        self.table[from.as_usize() + self.classes.get_by_unit(unit)] =
3468            to.as_u32();
3469    }
3470
3471    /// Add an empty state (a state where all transitions lead to a dead state)
3472    /// and return its identifier. The identifier returned is guaranteed to
3473    /// not point to any other existing state.
3474    ///
3475    /// If adding a state would exhaust the state identifier space, then this
3476    /// returns an error.
3477    fn add_empty_state(&mut self) -> Result<StateID, BuildError> {
3478        // Normally, to get a fresh state identifier, we would just
3479        // take the index of the next state added to the transition
3480        // table. However, we actually perform an optimization here
3481        // that pre-multiplies state IDs by the stride, such that they
3482        // point immediately at the beginning of their transitions in
3483        // the transition table. This avoids an extra multiplication
3484        // instruction for state lookup at search time.
3485        //
3486        // Premultiplied identifiers means that instead of your matching
3487        // loop looking something like this:
3488        //
3489        //   state = dfa.start
3490        //   for byte in haystack:
3491        //       next = dfa.transitions[state * stride + byte]
3492        //       if dfa.is_match(next):
3493        //           return true
3494        //   return false
3495        //
3496        // it can instead look like this:
3497        //
3498        //   state = dfa.start
3499        //   for byte in haystack:
3500        //       next = dfa.transitions[state + byte]
3501        //       if dfa.is_match(next):
3502        //           return true
3503        //   return false
3504        //
3505        // In other words, we save a multiplication instruction in the
3506        // critical path. This turns out to be a decent performance win.
3507        // The cost of using premultiplied state ids is that they can
3508        // require a bigger state id representation. (And they also make
3509        // the code a bit more complex, especially during minimization and
3510        // when reshuffling states, as one needs to convert back and forth
3511        // between state IDs and state indices.)
3512        //
3513        // To do this, we simply take the index of the state into the
3514        // entire transition table, rather than the index of the state
3515        // itself. e.g., If the stride is 64, then the ID of the 3rd state
3516        // is 192, not 2.
3517        let next = self.table.len();
3518        let id =
3519            StateID::new(next).map_err(|_| BuildError::too_many_states())?;
3520        self.table.extend(iter::repeat(0).take(self.stride()));
3521        Ok(id)
3522    }
3523
3524    /// Swap the two states given in this transition table.
3525    ///
3526    /// This routine does not do anything to check the correctness of this
3527    /// swap. Callers must ensure that other states pointing to id1 and id2 are
3528    /// updated appropriately.
3529    ///
3530    /// Both id1 and id2 must point to valid states, otherwise this panics.
3531    fn swap(&mut self, id1: StateID, id2: StateID) {
3532        assert!(self.is_valid(id1), "invalid 'id1' state: {id1:?}");
3533        assert!(self.is_valid(id2), "invalid 'id2' state: {id2:?}");
3534        // We only need to swap the parts of the state that are used. So if the
3535        // stride is 64, but the alphabet length is only 33, then we save a lot
3536        // of work.
3537        for b in 0..self.classes.alphabet_len() {
3538            self.table.swap(id1.as_usize() + b, id2.as_usize() + b);
3539        }
3540    }
3541
3542    /// Remap the transitions for the state given according to the function
3543    /// given. This applies the given map function to every transition in the
3544    /// given state and changes the transition in place to the result of the
3545    /// map function for that transition.
3546    fn remap(&mut self, id: StateID, map: impl Fn(StateID) -> StateID) {
3547        for byte in 0..self.alphabet_len() {
3548            let i = id.as_usize() + byte;
3549            let next = self.table()[i];
3550            self.table_mut()[id.as_usize() + byte] = map(next);
3551        }
3552    }
3553
3554    /// Truncate the states in this transition table to the given length.
3555    ///
3556    /// This routine does not do anything to check the correctness of this
3557    /// truncation. Callers must ensure that other states pointing to truncated
3558    /// states are updated appropriately.
3559    fn truncate(&mut self, len: usize) {
3560        self.table.truncate(len << self.stride2);
3561    }
3562}
3563
3564impl<T: AsRef<[u32]>> TransitionTable<T> {
3565    /// Writes a serialized form of this transition table to the buffer given.
3566    /// If the buffer is too small, then an error is returned. To determine
3567    /// how big the buffer must be, use `write_to_len`.
3568    fn write_to<E: Endian>(
3569        &self,
3570        mut dst: &mut [u8],
3571    ) -> Result<usize, SerializeError> {
3572        let nwrite = self.write_to_len();
3573        if dst.len() < nwrite {
3574            return Err(SerializeError::buffer_too_small("transition table"));
3575        }
3576        dst = &mut dst[..nwrite];
3577
3578        // write state length
3579        // Unwrap is OK since number of states is guaranteed to fit in a u32.
3580        E::write_u32(u32::try_from(self.len()).unwrap(), dst);
3581        dst = &mut dst[size_of::<u32>()..];
3582
3583        // write state stride (as power of 2)
3584        // Unwrap is OK since stride2 is guaranteed to be <= 9.
3585        E::write_u32(u32::try_from(self.stride2).unwrap(), dst);
3586        dst = &mut dst[size_of::<u32>()..];
3587
3588        // write byte class map
3589        let n = self.classes.write_to(dst)?;
3590        dst = &mut dst[n..];
3591
3592        // write actual transitions
3593        for &sid in self.table() {
3594            let n = wire::write_state_id::<E>(sid, &mut dst);
3595            dst = &mut dst[n..];
3596        }
3597        Ok(nwrite)
3598    }
3599
3600    /// Returns the number of bytes the serialized form of this transition
3601    /// table will use.
3602    fn write_to_len(&self) -> usize {
3603        size_of::<u32>()   // state length
3604        + size_of::<u32>() // stride2
3605        + self.classes.write_to_len()
3606        + (self.table().len() * StateID::SIZE)
3607    }
3608
3609    /// Validates that every state ID in this transition table is valid.
3610    ///
3611    /// That is, every state ID can be used to correctly index a state in this
3612    /// table.
3613    fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> {
3614        let sp = &dfa.special;
3615        for state in self.states() {
3616            // We check that the ID itself is well formed. That is, if it's
3617            // a special state then it must actually be a quit, dead, accel,
3618            // match or start state.
3619            if sp.is_special_state(state.id()) {
3620                let is_actually_special = sp.is_dead_state(state.id())
3621                    || sp.is_quit_state(state.id())
3622                    || sp.is_match_state(state.id())
3623                    || sp.is_start_state(state.id())
3624                    || sp.is_accel_state(state.id());
3625                if !is_actually_special {
3626                    // This is kind of a cryptic error message...
3627                    return Err(DeserializeError::generic(
3628                        "found dense state tagged as special but \
3629                         wasn't actually special",
3630                    ));
3631                }
3632                if sp.is_match_state(state.id())
3633                    && dfa.match_len(state.id()) == 0
3634                {
3635                    return Err(DeserializeError::generic(
3636                        "found match state with zero pattern IDs",
3637                    ));
3638                }
3639            }
3640            for (_, to) in state.transitions() {
3641                if !self.is_valid(to) {
3642                    return Err(DeserializeError::generic(
3643                        "found invalid state ID in transition table",
3644                    ));
3645                }
3646            }
3647        }
3648        Ok(())
3649    }
3650
3651    /// Converts this transition table to a borrowed value.
3652    fn as_ref(&self) -> TransitionTable<&'_ [u32]> {
3653        TransitionTable {
3654            table: self.table.as_ref(),
3655            classes: self.classes.clone(),
3656            stride2: self.stride2,
3657        }
3658    }
3659
3660    /// Converts this transition table to an owned value.
3661    #[cfg(feature = "alloc")]
3662    fn to_owned(&self) -> TransitionTable<alloc::vec::Vec<u32>> {
3663        TransitionTable {
3664            table: self.table.as_ref().to_vec(),
3665            classes: self.classes.clone(),
3666            stride2: self.stride2,
3667        }
3668    }
3669
3670    /// Return the state for the given ID. If the given ID is not valid, then
3671    /// this panics.
3672    fn state(&self, id: StateID) -> State<'_> {
3673        assert!(self.is_valid(id));
3674
3675        let i = id.as_usize();
3676        State {
3677            id,
3678            stride2: self.stride2,
3679            transitions: &self.table()[i..i + self.alphabet_len()],
3680        }
3681    }
3682
3683    /// Returns an iterator over all states in this transition table.
3684    ///
3685    /// This iterator yields a tuple for each state. The first element of the
3686    /// tuple corresponds to a state's identifier, and the second element
3687    /// corresponds to the state itself (comprised of its transitions).
3688    fn states(&self) -> StateIter<'_, T> {
3689        StateIter {
3690            tt: self,
3691            it: self.table().chunks(self.stride()).enumerate(),
3692        }
3693    }
3694
3695    /// Convert a state identifier to an index to a state (in the range
3696    /// 0..self.len()).
3697    ///
3698    /// This is useful when using a `Vec<T>` as an efficient map keyed by state
3699    /// to some other information (such as a remapped state ID).
3700    ///
3701    /// If the given ID is not valid, then this may panic or produce an
3702    /// incorrect index.
3703    fn to_index(&self, id: StateID) -> usize {
3704        id.as_usize() >> self.stride2
3705    }
3706
3707    /// Convert an index to a state (in the range 0..self.len()) to an actual
3708    /// state identifier.
3709    ///
3710    /// This is useful when using a `Vec<T>` as an efficient map keyed by state
3711    /// to some other information (such as a remapped state ID).
3712    ///
3713    /// If the given index is not in the specified range, then this may panic
3714    /// or produce an incorrect state ID.
3715    fn to_state_id(&self, index: usize) -> StateID {
3716        // CORRECTNESS: If the given index is not valid, then it is not
3717        // required for this to panic or return a valid state ID.
3718        StateID::new_unchecked(index << self.stride2)
3719    }
3720
3721    /// Returns the state ID for the state immediately following the one given.
3722    ///
3723    /// This does not check whether the state ID returned is invalid. In fact,
3724    /// if the state ID given is the last state in this DFA, then the state ID
3725    /// returned is guaranteed to be invalid.
3726    #[cfg(feature = "dfa-build")]
3727    fn next_state_id(&self, id: StateID) -> StateID {
3728        self.to_state_id(self.to_index(id).checked_add(1).unwrap())
3729    }
3730
3731    /// Returns the state ID for the state immediately preceding the one given.
3732    ///
3733    /// If the dead ID given (which is zero), then this panics.
3734    #[cfg(feature = "dfa-build")]
3735    fn prev_state_id(&self, id: StateID) -> StateID {
3736        self.to_state_id(self.to_index(id).checked_sub(1).unwrap())
3737    }
3738
3739    /// Returns the table as a slice of state IDs.
3740    fn table(&self) -> &[StateID] {
3741        wire::u32s_to_state_ids(self.table.as_ref())
3742    }
3743
3744    /// Returns the total number of states in this transition table.
3745    ///
3746    /// Note that a DFA always has at least two states: the dead and quit
3747    /// states. In particular, the dead state always has ID 0 and is
3748    /// correspondingly always the first state. The dead state is never a match
3749    /// state.
3750    fn len(&self) -> usize {
3751        self.table().len() >> self.stride2
3752    }
3753
3754    /// Returns the total stride for every state in this DFA. This corresponds
3755    /// to the total number of transitions used by each state in this DFA's
3756    /// transition table.
3757    fn stride(&self) -> usize {
3758        1 << self.stride2
3759    }
3760
3761    /// Returns the total number of elements in the alphabet for this
3762    /// transition table. This is always less than or equal to `self.stride()`.
3763    /// It is only equal when the alphabet length is a power of 2. Otherwise,
3764    /// it is always strictly less.
3765    fn alphabet_len(&self) -> usize {
3766        self.classes.alphabet_len()
3767    }
3768
3769    /// Returns true if and only if the given state ID is valid for this
3770    /// transition table. Validity in this context means that the given ID can
3771    /// be used as a valid offset with `self.stride()` to index this transition
3772    /// table.
3773    fn is_valid(&self, id: StateID) -> bool {
3774        let id = id.as_usize();
3775        id < self.table().len() && id % self.stride() == 0
3776    }
3777
3778    /// Return the memory usage, in bytes, of this transition table.
3779    ///
3780    /// This does not include the size of a `TransitionTable` value itself.
3781    fn memory_usage(&self) -> usize {
3782        self.table().len() * StateID::SIZE
3783    }
3784}
3785
3786#[cfg(feature = "dfa-build")]
3787impl<T: AsMut<[u32]>> TransitionTable<T> {
3788    /// Returns the table as a slice of state IDs.
3789    fn table_mut(&mut self) -> &mut [StateID] {
3790        wire::u32s_to_state_ids_mut(self.table.as_mut())
3791    }
3792}
3793
3794/// The set of all possible starting states in a DFA.
3795///
3796/// The set of starting states corresponds to the possible choices one can make
3797/// in terms of starting a DFA. That is, before following the first transition,
3798/// you first need to select the state that you start in.
3799///
3800/// Normally, a DFA converted from an NFA that has a single starting state
3801/// would itself just have one starting state. However, our support for look
3802/// around generally requires more starting states. The correct starting state
3803/// is chosen based on certain properties of the position at which we begin
3804/// our search.
3805///
3806/// Before listing those properties, we first must define two terms:
3807///
3808/// * `haystack` - The bytes to execute the search. The search always starts
3809///   at the beginning of `haystack` and ends before or at the end of
3810///   `haystack`.
3811/// * `context` - The (possibly empty) bytes surrounding `haystack`. `haystack`
3812///   must be contained within `context` such that `context` is at least as big
3813///   as `haystack`.
3814///
3815/// This split is crucial for dealing with look-around. For example, consider
3816/// the context `foobarbaz`, the haystack `bar` and the regex `^bar$`. This
3817/// regex should _not_ match the haystack since `bar` does not appear at the
3818/// beginning of the input. Similarly, the regex `\Bbar\B` should match the
3819/// haystack because `bar` is not surrounded by word boundaries. But a search
3820/// that does not take context into account would not permit `\B` to match
3821/// since the beginning of any string matches a word boundary. Similarly, a
3822/// search that does not take context into account when searching `^bar$` in
3823/// the haystack `bar` would produce a match when it shouldn't.
3824///
3825/// Thus, it follows that the starting state is chosen based on the following
3826/// criteria, derived from the position at which the search starts in the
3827/// `context` (corresponding to the start of `haystack`):
3828///
3829/// 1. If the search starts at the beginning of `context`, then the `Text`
3830///    start state is used. (Since `^` corresponds to
3831///    `hir::Anchor::Start`.)
3832/// 2. If the search starts at a position immediately following a line
3833///    terminator, then the `Line` start state is used. (Since `(?m:^)`
3834///    corresponds to `hir::Anchor::StartLF`.)
3835/// 3. If the search starts at a position immediately following a byte
3836///    classified as a "word" character (`[_0-9a-zA-Z]`), then the `WordByte`
3837///    start state is used. (Since `(?-u:\b)` corresponds to a word boundary.)
3838/// 4. Otherwise, if the search starts at a position immediately following
3839///    a byte that is not classified as a "word" character (`[^_0-9a-zA-Z]`),
3840///    then the `NonWordByte` start state is used. (Since `(?-u:\B)`
3841///    corresponds to a not-word-boundary.)
3842///
3843/// (N.B. Unicode word boundaries are not supported by the DFA because they
3844/// require multi-byte look-around and this is difficult to support in a DFA.)
3845///
3846/// To further complicate things, we also support constructing individual
3847/// anchored start states for each pattern in the DFA. (Which is required to
3848/// implement overlapping regexes correctly, but is also generally useful.)
3849/// Thus, when individual start states for each pattern are enabled, then the
3850/// total number of start states represented is `4 + (4 * #patterns)`, where
3851/// the 4 comes from each of the 4 possibilities above. The first 4 represents
3852/// the starting states for the entire DFA, which support searching for
3853/// multiple patterns simultaneously (possibly unanchored).
3854///
3855/// If individual start states are disabled, then this will only store 4
3856/// start states. Typically, individual start states are only enabled when
3857/// constructing the reverse DFA for regex matching. But they are also useful
3858/// for building DFAs that can search for a specific pattern or even to support
3859/// both anchored and unanchored searches with the same DFA.
3860///
3861/// Note though that while the start table always has either `4` or
3862/// `4 + (4 * #patterns)` starting state *ids*, the total number of states
3863/// might be considerably smaller. That is, many of the IDs may be duplicative.
3864/// (For example, if a regex doesn't have a `\b` sub-pattern, then there's no
3865/// reason to generate a unique starting state for handling word boundaries.
3866/// Similarly for start/end anchors.)
3867#[derive(Clone)]
3868pub(crate) struct StartTable<T> {
3869    /// The initial start state IDs.
3870    ///
3871    /// In practice, T is either `Vec<u32>` or `&[u32]`.
3872    ///
3873    /// The first `2 * stride` (currently always 8) entries always correspond
3874    /// to the starts states for the entire DFA, with the first 4 entries being
3875    /// for unanchored searches and the second 4 entries being for anchored
3876    /// searches. To keep things simple, we always use 8 entries even if the
3877    /// `StartKind` is not both.
3878    ///
3879    /// After that, there are `stride * patterns` state IDs, where `patterns`
3880    /// may be zero in the case of a DFA with no patterns or in the case where
3881    /// the DFA was built without enabling starting states for each pattern.
3882    table: T,
3883    /// The starting state configuration supported. When 'both', both
3884    /// unanchored and anchored searches work. When 'unanchored', anchored
3885    /// searches panic. When 'anchored', unanchored searches panic.
3886    kind: StartKind,
3887    /// The start state configuration for every possible byte.
3888    start_map: StartByteMap,
3889    /// The number of starting state IDs per pattern.
3890    stride: usize,
3891    /// The total number of patterns for which starting states are encoded.
3892    /// This is `None` for DFAs that were built without start states for each
3893    /// pattern. Thus, one cannot use this field to say how many patterns
3894    /// are in the DFA in all cases. It is specific to how many patterns are
3895    /// represented in this start table.
3896    pattern_len: Option<usize>,
3897    /// The universal starting state for unanchored searches. This is only
3898    /// present when the DFA supports unanchored searches and when all starting
3899    /// state IDs for an unanchored search are equivalent.
3900    universal_start_unanchored: Option<StateID>,
3901    /// The universal starting state for anchored searches. This is only
3902    /// present when the DFA supports anchored searches and when all starting
3903    /// state IDs for an anchored search are equivalent.
3904    universal_start_anchored: Option<StateID>,
3905}
3906
3907#[cfg(feature = "dfa-build")]
3908impl StartTable<Vec<u32>> {
3909    /// Create a valid set of start states all pointing to the dead state.
3910    ///
3911    /// When the corresponding DFA is constructed with start states for each
3912    /// pattern, then `patterns` should be the number of patterns. Otherwise,
3913    /// it should be zero.
3914    ///
3915    /// If the total table size could exceed the allocatable limit, then this
3916    /// returns an error. In practice, this is unlikely to be able to occur,
3917    /// since it's likely that allocation would have failed long before it got
3918    /// to this point.
3919    fn dead(
3920        kind: StartKind,
3921        lookm: &LookMatcher,
3922        pattern_len: Option<usize>,
3923    ) -> Result<StartTable<Vec<u32>>, BuildError> {
3924        if let Some(len) = pattern_len {
3925            assert!(len <= PatternID::LIMIT);
3926        }
3927        let stride = Start::len();
3928        // OK because 2*4 is never going to overflow anything.
3929        let starts_len = stride.checked_mul(2).unwrap();
3930        let pattern_starts_len =
3931            match stride.checked_mul(pattern_len.unwrap_or(0)) {
3932                Some(x) => x,
3933                None => return Err(BuildError::too_many_start_states()),
3934            };
3935        let table_len = match starts_len.checked_add(pattern_starts_len) {
3936            Some(x) => x,
3937            None => return Err(BuildError::too_many_start_states()),
3938        };
3939        if let Err(_) = isize::try_from(table_len) {
3940            return Err(BuildError::too_many_start_states());
3941        }
3942        let table = vec![DEAD.as_u32(); table_len];
3943        let start_map = StartByteMap::new(lookm);
3944        Ok(StartTable {
3945            table,
3946            kind,
3947            start_map,
3948            stride,
3949            pattern_len,
3950            universal_start_unanchored: None,
3951            universal_start_anchored: None,
3952        })
3953    }
3954}
3955
3956impl<'a> StartTable<&'a [u32]> {
3957    /// Deserialize a table of start state IDs starting at the beginning of
3958    /// `slice`. Upon success, return the total number of bytes read along with
3959    /// the table of starting state IDs.
3960    ///
3961    /// If there was a problem deserializing any part of the starting IDs,
3962    /// then this returns an error. Notably, if the given slice does not have
3963    /// the same alignment as `StateID`, then this will return an error (among
3964    /// other possible errors).
3965    ///
3966    /// This is guaranteed to execute in constant time.
3967    ///
3968    /// # Safety
3969    ///
3970    /// This routine is not safe because it does not check the validity of the
3971    /// starting state IDs themselves. In particular, the number of starting
3972    /// IDs can be of variable length, so it's possible that checking their
3973    /// validity cannot be done in constant time. An invalid starting state
3974    /// ID is not safe because other code may rely on the starting IDs being
3975    /// correct (such as explicit bounds check elision). Therefore, an invalid
3976    /// start ID can lead to undefined behavior.
3977    ///
3978    /// Callers that use this function must either pass on the safety invariant
3979    /// or guarantee that the bytes given contain valid starting state IDs.
3980    /// This guarantee is upheld by the bytes written by `write_to`.
3981    unsafe fn from_bytes_unchecked(
3982        mut slice: &'a [u8],
3983    ) -> Result<(StartTable<&'a [u32]>, usize), DeserializeError> {
3984        let slice_start = slice.as_ptr().as_usize();
3985
3986        let (kind, nr) = StartKind::from_bytes(slice)?;
3987        slice = &slice[nr..];
3988
3989        let (start_map, nr) = StartByteMap::from_bytes(slice)?;
3990        slice = &slice[nr..];
3991
3992        let (stride, nr) =
3993            wire::try_read_u32_as_usize(slice, "start table stride")?;
3994        slice = &slice[nr..];
3995        if stride != Start::len() {
3996            return Err(DeserializeError::generic(
3997                "invalid starting table stride",
3998            ));
3999        }
4000
4001        let (maybe_pattern_len, nr) =
4002            wire::try_read_u32_as_usize(slice, "start table patterns")?;
4003        slice = &slice[nr..];
4004        let pattern_len = if maybe_pattern_len.as_u32() == u32::MAX {
4005            None
4006        } else {
4007            Some(maybe_pattern_len)
4008        };
4009        if pattern_len.map_or(false, |len| len > PatternID::LIMIT) {
4010            return Err(DeserializeError::generic(
4011                "invalid number of patterns",
4012            ));
4013        }
4014
4015        let (universal_unanchored, nr) =
4016            wire::try_read_u32(slice, "universal unanchored start")?;
4017        slice = &slice[nr..];
4018        let universal_start_unanchored = if universal_unanchored == u32::MAX {
4019            None
4020        } else {
4021            Some(StateID::try_from(universal_unanchored).map_err(|e| {
4022                DeserializeError::state_id_error(
4023                    e,
4024                    "universal unanchored start",
4025                )
4026            })?)
4027        };
4028
4029        let (universal_anchored, nr) =
4030            wire::try_read_u32(slice, "universal anchored start")?;
4031        slice = &slice[nr..];
4032        let universal_start_anchored = if universal_anchored == u32::MAX {
4033            None
4034        } else {
4035            Some(StateID::try_from(universal_anchored).map_err(|e| {
4036                DeserializeError::state_id_error(e, "universal anchored start")
4037            })?)
4038        };
4039
4040        let pattern_table_size = wire::mul(
4041            stride,
4042            pattern_len.unwrap_or(0),
4043            "invalid pattern length",
4044        )?;
4045        // Our start states always start with a two stride of start states for
4046        // the entire automaton. The first stride is for unanchored starting
4047        // states and the second stride is for anchored starting states. What
4048        // follows it are an optional set of start states for each pattern.
4049        let start_state_len = wire::add(
4050            wire::mul(2, stride, "start state stride too big")?,
4051            pattern_table_size,
4052            "invalid 'any' pattern starts size",
4053        )?;
4054        let table_bytes_len = wire::mul(
4055            start_state_len,
4056            StateID::SIZE,
4057            "pattern table bytes length",
4058        )?;
4059        wire::check_slice_len(slice, table_bytes_len, "start ID table")?;
4060        wire::check_alignment::<StateID>(slice)?;
4061        let table_bytes = &slice[..table_bytes_len];
4062        slice = &slice[table_bytes_len..];
4063        // SAFETY: Since StateID is always representable as a u32, all we need
4064        // to do is ensure that we have the proper length and alignment. We've
4065        // checked both above, so the cast below is safe.
4066        //
4067        // N.B. This is the only not-safe code in this function.
4068        let table = core::slice::from_raw_parts(
4069            table_bytes.as_ptr().cast::<u32>(),
4070            start_state_len,
4071        );
4072        let st = StartTable {
4073            table,
4074            kind,
4075            start_map,
4076            stride,
4077            pattern_len,
4078            universal_start_unanchored,
4079            universal_start_anchored,
4080        };
4081        Ok((st, slice.as_ptr().as_usize() - slice_start))
4082    }
4083}
4084
4085impl<T: AsRef<[u32]>> StartTable<T> {
4086    /// Writes a serialized form of this start table to the buffer given. If
4087    /// the buffer is too small, then an error is returned. To determine how
4088    /// big the buffer must be, use `write_to_len`.
4089    fn write_to<E: Endian>(
4090        &self,
4091        mut dst: &mut [u8],
4092    ) -> Result<usize, SerializeError> {
4093        let nwrite = self.write_to_len();
4094        if dst.len() < nwrite {
4095            return Err(SerializeError::buffer_too_small(
4096                "starting table ids",
4097            ));
4098        }
4099        dst = &mut dst[..nwrite];
4100
4101        // write start kind
4102        let nw = self.kind.write_to::<E>(dst)?;
4103        dst = &mut dst[nw..];
4104        // write start byte map
4105        let nw = self.start_map.write_to(dst)?;
4106        dst = &mut dst[nw..];
4107        // write stride
4108        // Unwrap is OK since the stride is always 4 (currently).
4109        E::write_u32(u32::try_from(self.stride).unwrap(), dst);
4110        dst = &mut dst[size_of::<u32>()..];
4111        // write pattern length
4112        // Unwrap is OK since number of patterns is guaranteed to fit in a u32.
4113        E::write_u32(
4114            u32::try_from(self.pattern_len.unwrap_or(0xFFFF_FFFF)).unwrap(),
4115            dst,
4116        );
4117        dst = &mut dst[size_of::<u32>()..];
4118        // write universal start unanchored state id, u32::MAX if absent
4119        E::write_u32(
4120            self.universal_start_unanchored
4121                .map_or(u32::MAX, |sid| sid.as_u32()),
4122            dst,
4123        );
4124        dst = &mut dst[size_of::<u32>()..];
4125        // write universal start anchored state id, u32::MAX if absent
4126        E::write_u32(
4127            self.universal_start_anchored.map_or(u32::MAX, |sid| sid.as_u32()),
4128            dst,
4129        );
4130        dst = &mut dst[size_of::<u32>()..];
4131        // write start IDs
4132        for &sid in self.table() {
4133            let n = wire::write_state_id::<E>(sid, &mut dst);
4134            dst = &mut dst[n..];
4135        }
4136        Ok(nwrite)
4137    }
4138
4139    /// Returns the number of bytes the serialized form of this start ID table
4140    /// will use.
4141    fn write_to_len(&self) -> usize {
4142        self.kind.write_to_len()
4143        + self.start_map.write_to_len()
4144        + size_of::<u32>() // stride
4145        + size_of::<u32>() // # patterns
4146        + size_of::<u32>() // universal unanchored start
4147        + size_of::<u32>() // universal anchored start
4148        + (self.table().len() * StateID::SIZE)
4149    }
4150
4151    /// Validates that every state ID in this start table is valid by checking
4152    /// it against the given transition table (which must be for the same DFA).
4153    ///
4154    /// That is, every state ID can be used to correctly index a state.
4155    fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> {
4156        let tt = &dfa.tt;
4157        if !self.universal_start_unanchored.map_or(true, |s| tt.is_valid(s)) {
4158            return Err(DeserializeError::generic(
4159                "found invalid universal unanchored starting state ID",
4160            ));
4161        }
4162        if !self.universal_start_anchored.map_or(true, |s| tt.is_valid(s)) {
4163            return Err(DeserializeError::generic(
4164                "found invalid universal anchored starting state ID",
4165            ));
4166        }
4167        for &id in self.table() {
4168            if !tt.is_valid(id) {
4169                return Err(DeserializeError::generic(
4170                    "found invalid starting state ID",
4171                ));
4172            }
4173        }
4174        Ok(())
4175    }
4176
4177    /// Converts this start list to a borrowed value.
4178    fn as_ref(&self) -> StartTable<&'_ [u32]> {
4179        StartTable {
4180            table: self.table.as_ref(),
4181            kind: self.kind,
4182            start_map: self.start_map.clone(),
4183            stride: self.stride,
4184            pattern_len: self.pattern_len,
4185            universal_start_unanchored: self.universal_start_unanchored,
4186            universal_start_anchored: self.universal_start_anchored,
4187        }
4188    }
4189
4190    /// Converts this start list to an owned value.
4191    #[cfg(feature = "alloc")]
4192    fn to_owned(&self) -> StartTable<alloc::vec::Vec<u32>> {
4193        StartTable {
4194            table: self.table.as_ref().to_vec(),
4195            kind: self.kind,
4196            start_map: self.start_map.clone(),
4197            stride: self.stride,
4198            pattern_len: self.pattern_len,
4199            universal_start_unanchored: self.universal_start_unanchored,
4200            universal_start_anchored: self.universal_start_anchored,
4201        }
4202    }
4203
4204    /// Return the start state for the given input and starting configuration.
4205    /// This returns an error if the input configuration is not supported by
4206    /// this DFA. For example, requesting an unanchored search when the DFA was
4207    /// not built with unanchored starting states. Or asking for an anchored
4208    /// pattern search with an invalid pattern ID or on a DFA that was not
4209    /// built with start states for each pattern.
4210    #[cfg_attr(feature = "perf-inline", inline(always))]
4211    fn start(
4212        &self,
4213        anchored: Anchored,
4214        start: Start,
4215    ) -> Result<StateID, StartError> {
4216        let start_index = start.as_usize();
4217        let index = match anchored {
4218            Anchored::No => {
4219                if !self.kind.has_unanchored() {
4220                    return Err(StartError::unsupported_anchored(anchored));
4221                }
4222                start_index
4223            }
4224            Anchored::Yes => {
4225                if !self.kind.has_anchored() {
4226                    return Err(StartError::unsupported_anchored(anchored));
4227                }
4228                self.stride + start_index
4229            }
4230            Anchored::Pattern(pid) => {
4231                let len = match self.pattern_len {
4232                    None => {
4233                        return Err(StartError::unsupported_anchored(anchored))
4234                    }
4235                    Some(len) => len,
4236                };
4237                if pid.as_usize() >= len {
4238                    return Ok(DEAD);
4239                }
4240                (2 * self.stride)
4241                    + (self.stride * pid.as_usize())
4242                    + start_index
4243            }
4244        };
4245        Ok(self.table()[index])
4246    }
4247
4248    /// Returns an iterator over all start state IDs in this table.
4249    ///
4250    /// Each item is a triple of: start state ID, the start state type and the
4251    /// pattern ID (if any).
4252    fn iter(&self) -> StartStateIter<'_> {
4253        StartStateIter { st: self.as_ref(), i: 0 }
4254    }
4255
4256    /// Returns the table as a slice of state IDs.
4257    fn table(&self) -> &[StateID] {
4258        wire::u32s_to_state_ids(self.table.as_ref())
4259    }
4260
4261    /// Return the memory usage, in bytes, of this start list.
4262    ///
4263    /// This does not include the size of a `StartList` value itself.
4264    fn memory_usage(&self) -> usize {
4265        self.table().len() * StateID::SIZE
4266    }
4267}
4268
4269#[cfg(feature = "dfa-build")]
4270impl<T: AsMut<[u32]>> StartTable<T> {
4271    /// Set the start state for the given index and pattern.
4272    ///
4273    /// If the pattern ID or state ID are not valid, then this will panic.
4274    fn set_start(&mut self, anchored: Anchored, start: Start, id: StateID) {
4275        let start_index = start.as_usize();
4276        let index = match anchored {
4277            Anchored::No => start_index,
4278            Anchored::Yes => self.stride + start_index,
4279            Anchored::Pattern(pid) => {
4280                let pid = pid.as_usize();
4281                let len = self
4282                    .pattern_len
4283                    .expect("start states for each pattern enabled");
4284                assert!(pid < len, "invalid pattern ID {pid:?}");
4285                self.stride
4286                    .checked_mul(pid)
4287                    .unwrap()
4288                    .checked_add(self.stride.checked_mul(2).unwrap())
4289                    .unwrap()
4290                    .checked_add(start_index)
4291                    .unwrap()
4292            }
4293        };
4294        self.table_mut()[index] = id;
4295    }
4296
4297    /// Returns the table as a mutable slice of state IDs.
4298    fn table_mut(&mut self) -> &mut [StateID] {
4299        wire::u32s_to_state_ids_mut(self.table.as_mut())
4300    }
4301}
4302
4303/// An iterator over start state IDs.
4304///
4305/// This iterator yields a triple of start state ID, the anchored mode and the
4306/// start state type. If a pattern ID is relevant, then the anchored mode will
4307/// contain it. Start states with an anchored mode containing a pattern ID will
4308/// only occur when the DFA was compiled with start states for each pattern
4309/// (which is disabled by default).
4310pub(crate) struct StartStateIter<'a> {
4311    st: StartTable<&'a [u32]>,
4312    i: usize,
4313}
4314
4315impl<'a> Iterator for StartStateIter<'a> {
4316    type Item = (StateID, Anchored, Start);
4317
4318    fn next(&mut self) -> Option<(StateID, Anchored, Start)> {
4319        let i = self.i;
4320        let table = self.st.table();
4321        if i >= table.len() {
4322            return None;
4323        }
4324        self.i += 1;
4325
4326        // This unwrap is okay since the stride of the starting state table
4327        // must always match the number of start state types.
4328        let start_type = Start::from_usize(i % self.st.stride).unwrap();
4329        let anchored = if i < self.st.stride {
4330            Anchored::No
4331        } else if i < (2 * self.st.stride) {
4332            Anchored::Yes
4333        } else {
4334            let pid = (i - (2 * self.st.stride)) / self.st.stride;
4335            Anchored::Pattern(PatternID::new(pid).unwrap())
4336        };
4337        Some((table[i], anchored, start_type))
4338    }
4339}
4340
4341/// This type represents that patterns that should be reported whenever a DFA
4342/// enters a match state. This structure exists to support DFAs that search for
4343/// matches for multiple regexes.
4344///
4345/// This structure relies on the fact that all match states in a DFA occur
4346/// contiguously in the DFA's transition table. (See dfa/special.rs for a more
4347/// detailed breakdown of the representation.) Namely, when a match occurs, we
4348/// know its state ID. Since we know the start and end of the contiguous region
4349/// of match states, we can use that to compute the position at which the match
4350/// state occurs. That in turn is used as an offset into this structure.
4351#[derive(Clone, Debug)]
4352struct MatchStates<T> {
4353    /// Slices is a flattened sequence of pairs, where each pair points to a
4354    /// sub-slice of pattern_ids. The first element of the pair is an offset
4355    /// into pattern_ids and the second element of the pair is the number
4356    /// of 32-bit pattern IDs starting at that position. That is, each pair
4357    /// corresponds to a single DFA match state and its corresponding match
4358    /// IDs. The number of pairs always corresponds to the number of distinct
4359    /// DFA match states.
4360    ///
4361    /// In practice, T is either Vec<u32> or &[u32].
4362    slices: T,
4363    /// A flattened sequence of pattern IDs for each DFA match state. The only
4364    /// way to correctly read this sequence is indirectly via `slices`.
4365    ///
4366    /// In practice, T is either Vec<u32> or &[u32].
4367    pattern_ids: T,
4368    /// The total number of unique patterns represented by these match states.
4369    pattern_len: usize,
4370}
4371
4372impl<'a> MatchStates<&'a [u32]> {
4373    unsafe fn from_bytes_unchecked(
4374        mut slice: &'a [u8],
4375    ) -> Result<(MatchStates<&'a [u32]>, usize), DeserializeError> {
4376        let slice_start = slice.as_ptr().as_usize();
4377
4378        // Read the total number of match states.
4379        let (state_len, nr) =
4380            wire::try_read_u32_as_usize(slice, "match state length")?;
4381        slice = &slice[nr..];
4382
4383        // Read the slice start/length pairs.
4384        let pair_len = wire::mul(2, state_len, "match state offset pairs")?;
4385        let slices_bytes_len = wire::mul(
4386            pair_len,
4387            PatternID::SIZE,
4388            "match state slice offset byte length",
4389        )?;
4390        wire::check_slice_len(slice, slices_bytes_len, "match state slices")?;
4391        wire::check_alignment::<PatternID>(slice)?;
4392        let slices_bytes = &slice[..slices_bytes_len];
4393        slice = &slice[slices_bytes_len..];
4394        // SAFETY: Since PatternID is always representable as a u32, all we
4395        // need to do is ensure that we have the proper length and alignment.
4396        // We've checked both above, so the cast below is safe.
4397        //
4398        // N.B. This is one of the few not-safe snippets in this function,
4399        // so we mark it explicitly to call it out.
4400        let slices = core::slice::from_raw_parts(
4401            slices_bytes.as_ptr().cast::<u32>(),
4402            pair_len,
4403        );
4404
4405        // Read the total number of unique pattern IDs (which is always 1 more
4406        // than the maximum pattern ID in this automaton, since pattern IDs are
4407        // handed out contiguously starting at 0).
4408        let (pattern_len, nr) =
4409            wire::try_read_u32_as_usize(slice, "pattern length")?;
4410        slice = &slice[nr..];
4411
4412        // Now read the pattern ID length. We don't need to store this
4413        // explicitly, but we need it to know how many pattern IDs to read.
4414        let (idlen, nr) =
4415            wire::try_read_u32_as_usize(slice, "pattern ID length")?;
4416        slice = &slice[nr..];
4417
4418        // Read the actual pattern IDs.
4419        let pattern_ids_len =
4420            wire::mul(idlen, PatternID::SIZE, "pattern ID byte length")?;
4421        wire::check_slice_len(slice, pattern_ids_len, "match pattern IDs")?;
4422        wire::check_alignment::<PatternID>(slice)?;
4423        let pattern_ids_bytes = &slice[..pattern_ids_len];
4424        slice = &slice[pattern_ids_len..];
4425        // SAFETY: Since PatternID is always representable as a u32, all we
4426        // need to do is ensure that we have the proper length and alignment.
4427        // We've checked both above, so the cast below is safe.
4428        //
4429        // N.B. This is one of the few not-safe snippets in this function,
4430        // so we mark it explicitly to call it out.
4431        let pattern_ids = core::slice::from_raw_parts(
4432            pattern_ids_bytes.as_ptr().cast::<u32>(),
4433            idlen,
4434        );
4435
4436        let ms = MatchStates { slices, pattern_ids, pattern_len };
4437        Ok((ms, slice.as_ptr().as_usize() - slice_start))
4438    }
4439}
4440
4441#[cfg(feature = "dfa-build")]
4442impl MatchStates<Vec<u32>> {
4443    fn empty(pattern_len: usize) -> MatchStates<Vec<u32>> {
4444        assert!(pattern_len <= PatternID::LIMIT);
4445        MatchStates { slices: vec![], pattern_ids: vec![], pattern_len }
4446    }
4447
4448    fn new(
4449        matches: &BTreeMap<StateID, Vec<PatternID>>,
4450        pattern_len: usize,
4451    ) -> Result<MatchStates<Vec<u32>>, BuildError> {
4452        let mut m = MatchStates::empty(pattern_len);
4453        for (_, pids) in matches.iter() {
4454            let start = PatternID::new(m.pattern_ids.len())
4455                .map_err(|_| BuildError::too_many_match_pattern_ids())?;
4456            m.slices.push(start.as_u32());
4457            // This is always correct since the number of patterns in a single
4458            // match state can never exceed maximum number of allowable
4459            // patterns. Why? Because a pattern can only appear once in a
4460            // particular match state, by construction. (And since our pattern
4461            // ID limit is one less than u32::MAX, we're guaranteed that the
4462            // length fits in a u32.)
4463            m.slices.push(u32::try_from(pids.len()).unwrap());
4464            for &pid in pids {
4465                m.pattern_ids.push(pid.as_u32());
4466            }
4467        }
4468        m.pattern_len = pattern_len;
4469        Ok(m)
4470    }
4471
4472    fn new_with_map(
4473        &self,
4474        matches: &BTreeMap<StateID, Vec<PatternID>>,
4475    ) -> Result<MatchStates<Vec<u32>>, BuildError> {
4476        MatchStates::new(matches, self.pattern_len)
4477    }
4478}
4479
4480impl<T: AsRef<[u32]>> MatchStates<T> {
4481    /// Writes a serialized form of these match states to the buffer given. If
4482    /// the buffer is too small, then an error is returned. To determine how
4483    /// big the buffer must be, use `write_to_len`.
4484    fn write_to<E: Endian>(
4485        &self,
4486        mut dst: &mut [u8],
4487    ) -> Result<usize, SerializeError> {
4488        let nwrite = self.write_to_len();
4489        if dst.len() < nwrite {
4490            return Err(SerializeError::buffer_too_small("match states"));
4491        }
4492        dst = &mut dst[..nwrite];
4493
4494        // write state ID length
4495        // Unwrap is OK since number of states is guaranteed to fit in a u32.
4496        E::write_u32(u32::try_from(self.len()).unwrap(), dst);
4497        dst = &mut dst[size_of::<u32>()..];
4498
4499        // write slice offset pairs
4500        for &pid in self.slices() {
4501            let n = wire::write_pattern_id::<E>(pid, &mut dst);
4502            dst = &mut dst[n..];
4503        }
4504
4505        // write unique pattern ID length
4506        // Unwrap is OK since number of patterns is guaranteed to fit in a u32.
4507        E::write_u32(u32::try_from(self.pattern_len).unwrap(), dst);
4508        dst = &mut dst[size_of::<u32>()..];
4509
4510        // write pattern ID length
4511        // Unwrap is OK since we check at construction (and deserialization)
4512        // that the number of patterns is representable as a u32.
4513        E::write_u32(u32::try_from(self.pattern_ids().len()).unwrap(), dst);
4514        dst = &mut dst[size_of::<u32>()..];
4515
4516        // write pattern IDs
4517        for &pid in self.pattern_ids() {
4518            let n = wire::write_pattern_id::<E>(pid, &mut dst);
4519            dst = &mut dst[n..];
4520        }
4521
4522        Ok(nwrite)
4523    }
4524
4525    /// Returns the number of bytes the serialized form of these match states
4526    /// will use.
4527    fn write_to_len(&self) -> usize {
4528        size_of::<u32>()   // match state length
4529        + (self.slices().len() * PatternID::SIZE)
4530        + size_of::<u32>() // unique pattern ID length
4531        + size_of::<u32>() // pattern ID length
4532        + (self.pattern_ids().len() * PatternID::SIZE)
4533    }
4534
4535    /// Validates that the match state info is itself internally consistent and
4536    /// consistent with the recorded match state region in the given DFA.
4537    fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> {
4538        if self.len() != dfa.special.match_len(dfa.stride()) {
4539            return Err(DeserializeError::generic(
4540                "match state length mismatch",
4541            ));
4542        }
4543        for si in 0..self.len() {
4544            let start = self.slices()[si * 2].as_usize();
4545            let len = self.slices()[si * 2 + 1].as_usize();
4546            if start >= self.pattern_ids().len() {
4547                return Err(DeserializeError::generic(
4548                    "invalid pattern ID start offset",
4549                ));
4550            }
4551            if start + len > self.pattern_ids().len() {
4552                return Err(DeserializeError::generic(
4553                    "invalid pattern ID length",
4554                ));
4555            }
4556            for mi in 0..len {
4557                let pid = self.pattern_id(si, mi);
4558                if pid.as_usize() >= self.pattern_len {
4559                    return Err(DeserializeError::generic(
4560                        "invalid pattern ID",
4561                    ));
4562                }
4563            }
4564        }
4565        Ok(())
4566    }
4567
4568    /// Converts these match states back into their map form. This is useful
4569    /// when shuffling states, as the normal MatchStates representation is not
4570    /// amenable to easy state swapping. But with this map, to swap id1 and
4571    /// id2, all you need to do is:
4572    ///
4573    /// if let Some(pids) = map.remove(&id1) {
4574    ///     map.insert(id2, pids);
4575    /// }
4576    ///
4577    /// Once shuffling is done, use MatchStates::new to convert back.
4578    #[cfg(feature = "dfa-build")]
4579    fn to_map(&self, dfa: &DFA<T>) -> BTreeMap<StateID, Vec<PatternID>> {
4580        let mut map = BTreeMap::new();
4581        for i in 0..self.len() {
4582            let mut pids = vec![];
4583            for j in 0..self.pattern_len(i) {
4584                pids.push(self.pattern_id(i, j));
4585            }
4586            map.insert(self.match_state_id(dfa, i), pids);
4587        }
4588        map
4589    }
4590
4591    /// Converts these match states to a borrowed value.
4592    fn as_ref(&self) -> MatchStates<&'_ [u32]> {
4593        MatchStates {
4594            slices: self.slices.as_ref(),
4595            pattern_ids: self.pattern_ids.as_ref(),
4596            pattern_len: self.pattern_len,
4597        }
4598    }
4599
4600    /// Converts these match states to an owned value.
4601    #[cfg(feature = "alloc")]
4602    fn to_owned(&self) -> MatchStates<alloc::vec::Vec<u32>> {
4603        MatchStates {
4604            slices: self.slices.as_ref().to_vec(),
4605            pattern_ids: self.pattern_ids.as_ref().to_vec(),
4606            pattern_len: self.pattern_len,
4607        }
4608    }
4609
4610    /// Returns the match state ID given the match state index. (Where the
4611    /// first match state corresponds to index 0.)
4612    ///
4613    /// This panics if there is no match state at the given index.
4614    fn match_state_id(&self, dfa: &DFA<T>, index: usize) -> StateID {
4615        assert!(dfa.special.matches(), "no match states to index");
4616        // This is one of the places where we rely on the fact that match
4617        // states are contiguous in the transition table. Namely, that the
4618        // first match state ID always corresponds to dfa.special.min_start.
4619        // From there, since we know the stride, we can compute the ID of any
4620        // match state given its index.
4621        let stride2 = u32::try_from(dfa.stride2()).unwrap();
4622        let offset = index.checked_shl(stride2).unwrap();
4623        let id = dfa.special.min_match.as_usize().checked_add(offset).unwrap();
4624        let sid = StateID::new(id).unwrap();
4625        assert!(dfa.is_match_state(sid));
4626        sid
4627    }
4628
4629    /// Returns the pattern ID at the given match index for the given match
4630    /// state.
4631    ///
4632    /// The match state index is the state index minus the state index of the
4633    /// first match state in the DFA.
4634    ///
4635    /// The match index is the index of the pattern ID for the given state.
4636    /// The index must be less than `self.pattern_len(state_index)`.
4637    #[cfg_attr(feature = "perf-inline", inline(always))]
4638    fn pattern_id(&self, state_index: usize, match_index: usize) -> PatternID {
4639        self.pattern_id_slice(state_index)[match_index]
4640    }
4641
4642    /// Returns the number of patterns in the given match state.
4643    ///
4644    /// The match state index is the state index minus the state index of the
4645    /// first match state in the DFA.
4646    #[cfg_attr(feature = "perf-inline", inline(always))]
4647    fn pattern_len(&self, state_index: usize) -> usize {
4648        self.slices()[state_index * 2 + 1].as_usize()
4649    }
4650
4651    /// Returns all of the pattern IDs for the given match state index.
4652    ///
4653    /// The match state index is the state index minus the state index of the
4654    /// first match state in the DFA.
4655    #[cfg_attr(feature = "perf-inline", inline(always))]
4656    fn pattern_id_slice(&self, state_index: usize) -> &[PatternID] {
4657        let start = self.slices()[state_index * 2].as_usize();
4658        let len = self.pattern_len(state_index);
4659        &self.pattern_ids()[start..start + len]
4660    }
4661
4662    /// Returns the pattern ID offset slice of u32 as a slice of PatternID.
4663    #[cfg_attr(feature = "perf-inline", inline(always))]
4664    fn slices(&self) -> &[PatternID] {
4665        wire::u32s_to_pattern_ids(self.slices.as_ref())
4666    }
4667
4668    /// Returns the total number of match states.
4669    #[cfg_attr(feature = "perf-inline", inline(always))]
4670    fn len(&self) -> usize {
4671        assert_eq!(0, self.slices().len() % 2);
4672        self.slices().len() / 2
4673    }
4674
4675    /// Returns the pattern ID slice of u32 as a slice of PatternID.
4676    #[cfg_attr(feature = "perf-inline", inline(always))]
4677    fn pattern_ids(&self) -> &[PatternID] {
4678        wire::u32s_to_pattern_ids(self.pattern_ids.as_ref())
4679    }
4680
4681    /// Return the memory usage, in bytes, of these match pairs.
4682    fn memory_usage(&self) -> usize {
4683        (self.slices().len() + self.pattern_ids().len()) * PatternID::SIZE
4684    }
4685}
4686
4687/// A common set of flags for both dense and sparse DFAs. This primarily
4688/// centralizes the serialization format of these flags at a bitset.
4689#[derive(Clone, Copy, Debug)]
4690pub(crate) struct Flags {
4691    /// Whether the DFA can match the empty string. When this is false, all
4692    /// matches returned by this DFA are guaranteed to have non-zero length.
4693    pub(crate) has_empty: bool,
4694    /// Whether the DFA should only produce matches with spans that correspond
4695    /// to valid UTF-8. This also includes omitting any zero-width matches that
4696    /// split the UTF-8 encoding of a codepoint.
4697    pub(crate) is_utf8: bool,
4698    /// Whether the DFA is always anchored or not, regardless of `Input`
4699    /// configuration. This is useful for avoiding a reverse scan even when
4700    /// executing unanchored searches.
4701    pub(crate) is_always_start_anchored: bool,
4702}
4703
4704impl Flags {
4705    /// Creates a set of flags for a DFA from an NFA.
4706    ///
4707    /// N.B. This constructor was defined at the time of writing because all
4708    /// of the flags are derived directly from the NFA. If this changes in the
4709    /// future, we might be more thoughtful about how the `Flags` value is
4710    /// itself built.
4711    #[cfg(feature = "dfa-build")]
4712    fn from_nfa(nfa: &thompson::NFA) -> Flags {
4713        Flags {
4714            has_empty: nfa.has_empty(),
4715            is_utf8: nfa.is_utf8(),
4716            is_always_start_anchored: nfa.is_always_start_anchored(),
4717        }
4718    }
4719
4720    /// Deserializes the flags from the given slice. On success, this also
4721    /// returns the number of bytes read from the slice.
4722    pub(crate) fn from_bytes(
4723        slice: &[u8],
4724    ) -> Result<(Flags, usize), DeserializeError> {
4725        let (bits, nread) = wire::try_read_u32(slice, "flag bitset")?;
4726        let flags = Flags {
4727            has_empty: bits & (1 << 0) != 0,
4728            is_utf8: bits & (1 << 1) != 0,
4729            is_always_start_anchored: bits & (1 << 2) != 0,
4730        };
4731        Ok((flags, nread))
4732    }
4733
4734    /// Writes these flags to the given byte slice. If the buffer is too small,
4735    /// then an error is returned. To determine how big the buffer must be,
4736    /// use `write_to_len`.
4737    pub(crate) fn write_to<E: Endian>(
4738        &self,
4739        dst: &mut [u8],
4740    ) -> Result<usize, SerializeError> {
4741        fn bool_to_int(b: bool) -> u32 {
4742            if b {
4743                1
4744            } else {
4745                0
4746            }
4747        }
4748
4749        let nwrite = self.write_to_len();
4750        if dst.len() < nwrite {
4751            return Err(SerializeError::buffer_too_small("flag bitset"));
4752        }
4753        let bits = (bool_to_int(self.has_empty) << 0)
4754            | (bool_to_int(self.is_utf8) << 1)
4755            | (bool_to_int(self.is_always_start_anchored) << 2);
4756        E::write_u32(bits, dst);
4757        Ok(nwrite)
4758    }
4759
4760    /// Returns the number of bytes the serialized form of these flags
4761    /// will use.
4762    pub(crate) fn write_to_len(&self) -> usize {
4763        size_of::<u32>()
4764    }
4765}
4766
4767/// An iterator over all states in a DFA.
4768///
4769/// This iterator yields a tuple for each state. The first element of the
4770/// tuple corresponds to a state's identifier, and the second element
4771/// corresponds to the state itself (comprised of its transitions).
4772///
4773/// `'a` corresponding to the lifetime of original DFA, `T` corresponds to
4774/// the type of the transition table itself.
4775pub(crate) struct StateIter<'a, T> {
4776    tt: &'a TransitionTable<T>,
4777    it: iter::Enumerate<slice::Chunks<'a, StateID>>,
4778}
4779
4780impl<'a, T: AsRef<[u32]>> Iterator for StateIter<'a, T> {
4781    type Item = State<'a>;
4782
4783    fn next(&mut self) -> Option<State<'a>> {
4784        self.it.next().map(|(index, _)| {
4785            let id = self.tt.to_state_id(index);
4786            self.tt.state(id)
4787        })
4788    }
4789}
4790
4791/// An immutable representation of a single DFA state.
4792///
4793/// `'a` corresponding to the lifetime of a DFA's transition table.
4794pub(crate) struct State<'a> {
4795    id: StateID,
4796    stride2: usize,
4797    transitions: &'a [StateID],
4798}
4799
4800impl<'a> State<'a> {
4801    /// Return an iterator over all transitions in this state. This yields
4802    /// a number of transitions equivalent to the alphabet length of the
4803    /// corresponding DFA.
4804    ///
4805    /// Each transition is represented by a tuple. The first element is
4806    /// the input byte for that transition and the second element is the
4807    /// transitions itself.
4808    pub(crate) fn transitions(&self) -> StateTransitionIter<'_> {
4809        StateTransitionIter {
4810            len: self.transitions.len(),
4811            it: self.transitions.iter().enumerate(),
4812        }
4813    }
4814
4815    /// Return an iterator over a sparse representation of the transitions in
4816    /// this state. Only non-dead transitions are returned.
4817    ///
4818    /// The "sparse" representation in this case corresponds to a sequence of
4819    /// triples. The first two elements of the triple comprise an inclusive
4820    /// byte range while the last element corresponds to the transition taken
4821    /// for all bytes in the range.
4822    ///
4823    /// This is somewhat more condensed than the classical sparse
4824    /// representation (where you have an element for every non-dead
4825    /// transition), but in practice, checking if a byte is in a range is very
4826    /// cheap and using ranges tends to conserve quite a bit more space.
4827    pub(crate) fn sparse_transitions(&self) -> StateSparseTransitionIter<'_> {
4828        StateSparseTransitionIter { dense: self.transitions(), cur: None }
4829    }
4830
4831    /// Returns the identifier for this state.
4832    pub(crate) fn id(&self) -> StateID {
4833        self.id
4834    }
4835
4836    /// Analyzes this state to determine whether it can be accelerated. If so,
4837    /// it returns an accelerator that contains at least one byte.
4838    #[cfg(feature = "dfa-build")]
4839    fn accelerate(&self, classes: &ByteClasses) -> Option<Accel> {
4840        // We just try to add bytes to our accelerator. Once adding fails
4841        // (because we've added too many bytes), then give up.
4842        let mut accel = Accel::new();
4843        for (class, id) in self.transitions() {
4844            if id == self.id() {
4845                continue;
4846            }
4847            for unit in classes.elements(class) {
4848                if let Some(byte) = unit.as_u8() {
4849                    if !accel.add(byte) {
4850                        return None;
4851                    }
4852                }
4853            }
4854        }
4855        if accel.is_empty() {
4856            None
4857        } else {
4858            Some(accel)
4859        }
4860    }
4861}
4862
4863impl<'a> fmt::Debug for State<'a> {
4864    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4865        for (i, (start, end, sid)) in self.sparse_transitions().enumerate() {
4866            let id = if f.alternate() {
4867                sid.as_usize()
4868            } else {
4869                sid.as_usize() >> self.stride2
4870            };
4871            if i > 0 {
4872                write!(f, ", ")?;
4873            }
4874            if start == end {
4875                write!(f, "{start:?} => {id:?}")?;
4876            } else {
4877                write!(f, "{start:?}-{end:?} => {id:?}")?;
4878            }
4879        }
4880        Ok(())
4881    }
4882}
4883
4884/// An iterator over all transitions in a single DFA state. This yields
4885/// a number of transitions equivalent to the alphabet length of the
4886/// corresponding DFA.
4887///
4888/// Each transition is represented by a tuple. The first element is the input
4889/// byte for that transition and the second element is the transition itself.
4890#[derive(Debug)]
4891pub(crate) struct StateTransitionIter<'a> {
4892    len: usize,
4893    it: iter::Enumerate<slice::Iter<'a, StateID>>,
4894}
4895
4896impl<'a> Iterator for StateTransitionIter<'a> {
4897    type Item = (alphabet::Unit, StateID);
4898
4899    fn next(&mut self) -> Option<(alphabet::Unit, StateID)> {
4900        self.it.next().map(|(i, &id)| {
4901            let unit = if i + 1 == self.len {
4902                alphabet::Unit::eoi(i)
4903            } else {
4904                let b = u8::try_from(i)
4905                    .expect("raw byte alphabet is never exceeded");
4906                alphabet::Unit::u8(b)
4907            };
4908            (unit, id)
4909        })
4910    }
4911}
4912
4913/// An iterator over all non-DEAD transitions in a single DFA state using a
4914/// sparse representation.
4915///
4916/// Each transition is represented by a triple. The first two elements of the
4917/// triple comprise an inclusive byte range while the last element corresponds
4918/// to the transition taken for all bytes in the range.
4919///
4920/// As a convenience, this always returns `alphabet::Unit` values of the same
4921/// type. That is, you'll never get a (byte, EOI) or a (EOI, byte). Only (byte,
4922/// byte) and (EOI, EOI) values are yielded.
4923#[derive(Debug)]
4924pub(crate) struct StateSparseTransitionIter<'a> {
4925    dense: StateTransitionIter<'a>,
4926    cur: Option<(alphabet::Unit, alphabet::Unit, StateID)>,
4927}
4928
4929impl<'a> Iterator for StateSparseTransitionIter<'a> {
4930    type Item = (alphabet::Unit, alphabet::Unit, StateID);
4931
4932    fn next(&mut self) -> Option<(alphabet::Unit, alphabet::Unit, StateID)> {
4933        while let Some((unit, next)) = self.dense.next() {
4934            let (prev_start, prev_end, prev_next) = match self.cur {
4935                Some(t) => t,
4936                None => {
4937                    self.cur = Some((unit, unit, next));
4938                    continue;
4939                }
4940            };
4941            if prev_next == next && !unit.is_eoi() {
4942                self.cur = Some((prev_start, unit, prev_next));
4943            } else {
4944                self.cur = Some((unit, unit, next));
4945                if prev_next != DEAD {
4946                    return Some((prev_start, prev_end, prev_next));
4947                }
4948            }
4949        }
4950        if let Some((start, end, next)) = self.cur.take() {
4951            if next != DEAD {
4952                return Some((start, end, next));
4953            }
4954        }
4955        None
4956    }
4957}
4958
4959/// An error that occurred during the construction of a DFA.
4960///
4961/// This error does not provide many introspection capabilities. There are
4962/// generally only two things you can do with it:
4963///
4964/// * Obtain a human readable message via its `std::fmt::Display` impl.
4965/// * Access an underlying [`nfa::thompson::BuildError`](thompson::BuildError)
4966/// type from its `source` method via the `std::error::Error` trait. This error
4967/// only occurs when using convenience routines for building a DFA directly
4968/// from a pattern string.
4969///
4970/// When the `std` feature is enabled, this implements the `std::error::Error`
4971/// trait.
4972#[cfg(feature = "dfa-build")]
4973#[derive(Clone, Debug)]
4974pub struct BuildError {
4975    kind: BuildErrorKind,
4976}
4977
4978#[cfg(feature = "dfa-build")]
4979impl BuildError {
4980    /// Returns true if and only if this error corresponds to an error with DFA
4981    /// construction that occurred because of exceeding a size limit.
4982    ///
4983    /// While this can occur when size limits like [`Config::dfa_size_limit`]
4984    /// or [`Config::determinize_size_limit`] are exceeded, this can also occur
4985    /// when the number of states or patterns exceeds a hard-coded maximum.
4986    /// (Where these maximums are derived based on the values representable by
4987    /// [`StateID`] and [`PatternID`].)
4988    ///
4989    /// This predicate is useful in contexts where you want to distinguish
4990    /// between errors related to something provided by an end user (for
4991    /// example, an invalid regex pattern) and errors related to configured
4992    /// heuristics. For example, building a DFA might be an optimization that
4993    /// you want to skip if construction fails because of an exceeded size
4994    /// limit, but where you want to bubble up an error if it fails for some
4995    /// other reason.
4996    ///
4997    /// # Example
4998    ///
4999    /// ```
5000    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
5001    /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039
5002    /// use regex_automata::{dfa::{dense, Automaton}, Input};
5003    ///
5004    /// let err = dense::Builder::new()
5005    ///     .configure(dense::Config::new()
5006    ///         .determinize_size_limit(Some(100_000))
5007    ///     )
5008    ///     .build(r"\w{20}")
5009    ///     .unwrap_err();
5010    /// // This error occurs because a size limit was exceeded.
5011    /// // But things are otherwise valid.
5012    /// assert!(err.is_size_limit_exceeded());
5013    ///
5014    /// let err = dense::Builder::new()
5015    ///     .build(r"\bxyz\b")
5016    ///     .unwrap_err();
5017    /// // This error occurs because a Unicode word boundary
5018    /// // was used without enabling heuristic support for it.
5019    /// // So... not related to size limits.
5020    /// assert!(!err.is_size_limit_exceeded());
5021    ///
5022    /// let err = dense::Builder::new()
5023    ///     .build(r"(xyz")
5024    ///     .unwrap_err();
5025    /// // This error occurs because the pattern is invalid.
5026    /// // So... not related to size limits.
5027    /// assert!(!err.is_size_limit_exceeded());
5028    ///
5029    /// # Ok::<(), Box<dyn std::error::Error>>(())
5030    /// ```
5031    #[inline]
5032    pub fn is_size_limit_exceeded(&self) -> bool {
5033        use self::BuildErrorKind::*;
5034
5035        match self.kind {
5036            NFA(_) | Unsupported(_) => false,
5037            TooManyStates
5038            | TooManyStartStates
5039            | TooManyMatchPatternIDs
5040            | DFAExceededSizeLimit { .. }
5041            | DeterminizeExceededSizeLimit { .. } => true,
5042        }
5043    }
5044}
5045
5046/// The kind of error that occurred during the construction of a DFA.
5047///
5048/// Note that this error is non-exhaustive. Adding new variants is not
5049/// considered a breaking change.
5050#[cfg(feature = "dfa-build")]
5051#[derive(Clone, Debug)]
5052enum BuildErrorKind {
5053    /// An error that occurred while constructing an NFA as a precursor step
5054    /// before a DFA is compiled.
5055    NFA(thompson::BuildError),
5056    /// An error that occurred because an unsupported regex feature was used.
5057    /// The message string describes which unsupported feature was used.
5058    ///
5059    /// The primary regex feature that is unsupported by DFAs is the Unicode
5060    /// word boundary look-around assertion (`\b`). This can be worked around
5061    /// by either using an ASCII word boundary (`(?-u:\b)`) or by enabling
5062    /// Unicode word boundaries when building a DFA.
5063    Unsupported(&'static str),
5064    /// An error that occurs if too many states are produced while building a
5065    /// DFA.
5066    TooManyStates,
5067    /// An error that occurs if too many start states are needed while building
5068    /// a DFA.
5069    ///
5070    /// This is a kind of oddball error that occurs when building a DFA with
5071    /// start states enabled for each pattern and enough patterns to cause
5072    /// the table of start states to overflow `usize`.
5073    TooManyStartStates,
5074    /// This is another oddball error that can occur if there are too many
5075    /// patterns spread out across too many match states.
5076    TooManyMatchPatternIDs,
5077    /// An error that occurs if the DFA got too big during determinization.
5078    DFAExceededSizeLimit { limit: usize },
5079    /// An error that occurs if auxiliary storage (not the DFA) used during
5080    /// determinization got too big.
5081    DeterminizeExceededSizeLimit { limit: usize },
5082}
5083
5084#[cfg(feature = "dfa-build")]
5085impl BuildError {
5086    /// Return the kind of this error.
5087    fn kind(&self) -> &BuildErrorKind {
5088        &self.kind
5089    }
5090
5091    pub(crate) fn nfa(err: thompson::BuildError) -> BuildError {
5092        BuildError { kind: BuildErrorKind::NFA(err) }
5093    }
5094
5095    pub(crate) fn unsupported_dfa_word_boundary_unicode() -> BuildError {
5096        let msg = "cannot build DFAs for regexes with Unicode word \
5097                   boundaries; switch to ASCII word boundaries, or \
5098                   heuristically enable Unicode word boundaries or use a \
5099                   different regex engine";
5100        BuildError { kind: BuildErrorKind::Unsupported(msg) }
5101    }
5102
5103    pub(crate) fn too_many_states() -> BuildError {
5104        BuildError { kind: BuildErrorKind::TooManyStates }
5105    }
5106
5107    pub(crate) fn too_many_start_states() -> BuildError {
5108        BuildError { kind: BuildErrorKind::TooManyStartStates }
5109    }
5110
5111    pub(crate) fn too_many_match_pattern_ids() -> BuildError {
5112        BuildError { kind: BuildErrorKind::TooManyMatchPatternIDs }
5113    }
5114
5115    pub(crate) fn dfa_exceeded_size_limit(limit: usize) -> BuildError {
5116        BuildError { kind: BuildErrorKind::DFAExceededSizeLimit { limit } }
5117    }
5118
5119    pub(crate) fn determinize_exceeded_size_limit(limit: usize) -> BuildError {
5120        BuildError {
5121            kind: BuildErrorKind::DeterminizeExceededSizeLimit { limit },
5122        }
5123    }
5124}
5125
5126#[cfg(all(feature = "std", feature = "dfa-build"))]
5127impl std::error::Error for BuildError {
5128    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
5129        match self.kind() {
5130            BuildErrorKind::NFA(ref err) => Some(err),
5131            _ => None,
5132        }
5133    }
5134}
5135
5136#[cfg(feature = "dfa-build")]
5137impl core::fmt::Display for BuildError {
5138    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
5139        match self.kind() {
5140            BuildErrorKind::NFA(_) => write!(f, "error building NFA"),
5141            BuildErrorKind::Unsupported(ref msg) => {
5142                write!(f, "unsupported regex feature for DFAs: {msg}")
5143            }
5144            BuildErrorKind::TooManyStates => write!(
5145                f,
5146                "number of DFA states exceeds limit of {}",
5147                StateID::LIMIT,
5148            ),
5149            BuildErrorKind::TooManyStartStates => {
5150                let stride = Start::len();
5151                // The start table has `stride` entries for starting states for
5152                // the entire DFA, and then `stride` entries for each pattern
5153                // if start states for each pattern are enabled (which is the
5154                // only way this error can occur). Thus, the total number of
5155                // patterns that can fit in the table is `stride` less than
5156                // what we can allocate.
5157                let max = usize::try_from(core::isize::MAX).unwrap();
5158                let limit = (max - stride) / stride;
5159                write!(
5160                    f,
5161                    "compiling DFA with start states exceeds pattern \
5162                     pattern limit of {}",
5163                    limit,
5164                )
5165            }
5166            BuildErrorKind::TooManyMatchPatternIDs => write!(
5167                f,
5168                "compiling DFA with total patterns in all match states \
5169                 exceeds limit of {}",
5170                PatternID::LIMIT,
5171            ),
5172            BuildErrorKind::DFAExceededSizeLimit { limit } => write!(
5173                f,
5174                "DFA exceeded size limit of {limit:?} during determinization",
5175            ),
5176            BuildErrorKind::DeterminizeExceededSizeLimit { limit } => {
5177                write!(f, "determinization exceeded size limit of {limit:?}")
5178            }
5179        }
5180    }
5181}
5182
5183#[cfg(all(test, feature = "syntax", feature = "dfa-build"))]
5184mod tests {
5185    use crate::{Input, MatchError};
5186
5187    use super::*;
5188
5189    #[test]
5190    fn errors_with_unicode_word_boundary() {
5191        let pattern = r"\b";
5192        assert!(Builder::new().build(pattern).is_err());
5193    }
5194
5195    #[test]
5196    fn roundtrip_never_match() {
5197        let dfa = DFA::never_match().unwrap();
5198        let (buf, _) = dfa.to_bytes_native_endian();
5199        let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0;
5200
5201        assert_eq!(None, dfa.try_search_fwd(&Input::new("foo12345")).unwrap());
5202    }
5203
5204    #[test]
5205    fn roundtrip_always_match() {
5206        use crate::HalfMatch;
5207
5208        let dfa = DFA::always_match().unwrap();
5209        let (buf, _) = dfa.to_bytes_native_endian();
5210        let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0;
5211
5212        assert_eq!(
5213            Some(HalfMatch::must(0, 0)),
5214            dfa.try_search_fwd(&Input::new("foo12345")).unwrap()
5215        );
5216    }
5217
5218    // See the analogous test in src/hybrid/dfa.rs.
5219    #[test]
5220    fn heuristic_unicode_reverse() {
5221        let dfa = DFA::builder()
5222            .configure(DFA::config().unicode_word_boundary(true))
5223            .thompson(thompson::Config::new().reverse(true))
5224            .build(r"\b[0-9]+\b")
5225            .unwrap();
5226
5227        let input = Input::new("β123").range(2..);
5228        let expected = MatchError::quit(0xB2, 1);
5229        let got = dfa.try_search_rev(&input);
5230        assert_eq!(Err(expected), got);
5231
5232        let input = Input::new("123β").range(..3);
5233        let expected = MatchError::quit(0xCE, 3);
5234        let got = dfa.try_search_rev(&input);
5235        assert_eq!(Err(expected), got);
5236    }
5237}