1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
//! Derive volatile accesses to a register map and memory-mapped IO.
//!
//! The main entry point of this crate is the derive macro [`RegMap`], that generates a new pointer
//! type to a defined register map.
//!
//! **Table of contents**
//! - [Basic usage](#basic-usage)
//! - [Register types](#register-types)
//! - [Basic registers](#basic-registers)
//! - [Nested register maps](#nested-register-maps)
//! - [Arrays of registers](#arrays-of-registers)
//! - [Iterators](#iterators)
//! - [Access permissions](#access-permissions)
//! - [Type layout and representation](#type-layout-and-representation)
//! - [Thread safety](#thread-safety)
//! - [Principle of operation](#principle-of-operation)
//! - [Sample generated code](#sample-generated-code)
//! - [Comparison with other crates](#comparison-with-other-crates)
//! - [volatile](#volatile)
//! - [volatile-register](#volatile-register)
//! - [Further reading](#further-reading)
//!
//! # Basic usage
//!
//! ```rust
//! # mod yoo {
//! # use reg_map::RegMap;
//! // define struct Registers with the register map
//! // and derive the pointer RegistersPtr using the RegMap macro
//! #[repr(C)]
//! #[derive(RegMap, Default)]
//! # pub
//! struct Registers {
//! field1: u64,
//! field2: u32,
//! #[reg(RO)]
//! read_only_field: i8,
//! #[reg(WO)]
//! write_only_field: u128,
//! #[reg(RW)]
//! read_write_is_default: i16,
//! }
//! # } // mod yoo
//! # use yoo::{Registers, RegistersPtr};
//!
//! // initialize the base struct
//! // and obtain a pointer to the registers
//! let mut regs = Registers::default();
//! let ptr = RegistersPtr::from_mut(&mut regs);
//!
//! // when dealing with e.g. memory-mapped IO (MMIO),
//! // you'd probably just get a pointer to the data from a known base address
//! // let ptr = unsafe { RegistersPtr::from_ptr(0xAA55_000 as *mut _) };
//!
//! // all write() operations are volatile
//! ptr.field1().write(10);
//! ptr.field2().write(32);
//! ptr.write_only_field().write(76);
//! ptr.read_write_is_default().write(98);
//!
//! // all read() operations are volatile
//! assert_eq!(ptr.field1().read(), 10);
//! assert_eq!(ptr.field2().read(), 32);
//! assert_eq!(ptr.read_only_field().read(), 0);
//! assert_eq!(ptr.read_write_is_default().read(), 98);
//! ```
//!
//! Read/write permissions are checked at compile time. The following code does not compile:
//! ```compile_fail
//! # mod yoo {
//! # use reg_map::RegMap;
//! # #[repr(C)]
//! # #[derive(RegMap, Default)]
//! # pub struct Registers {
//! # field1: u64,
//! # field2: u32,
//! # #[reg(RO)]
//! # read_only_field: i8,
//! # #[reg(WO)]
//! # write_only_field: u128,
//! # #[reg(RW)]
//! # read_write_is_default: i16,
//! # }
//! # } // mod yoo
//! # use yoo::{Registers, RegistersPtr};
//! # let mut regs = Registers::default();
//! # let ptr = RegistersPtr::from_mut(&mut regs);
//! ptr.read_only_field().write(54); // error[E0277]: cannot write to a read-only register
//! ptr.write_only_field().read(); // error[E0277]: cannot read from a write-only register
//! ```
//!
//! # Register types
//!
//! ## Basic registers
//!
//! These primitive integer types are supported as basic register types:
//! - unsigned [`u8`], [`u16`], [`u32`], [`u64`] and [`u128`],
//! - signed [`i8`], [`i16`], [`i32`], [`i64`] and [`i128`].
//!
//! The pointer-sized integer types [`usize`] and [`isize`] are *not* supported.
//!
//! For a register map containing a basic register:
//! ```
//! # mod yoo {
//! # use reg_map::RegMap;
//! #[derive(RegMap, Default)]
//! #[repr(C)]
//! struct Basic {
//! field: u64,
//! }
//! # } // mod yoo
//! ```
//! The [`RegMap`] derive macro will generate the following abridged code:
//! ```ignore
//! struct BasicPtr<'a> { ... };
//! impl<'a> BasicPtr<'a> {
//! fn field(&self) -> Reg<'a, u64, ReadWrite> { ... }
//! }
//! ```
//! where the read/write operations on the register are performed through the [`Reg`] type, and the
//! access permissions default to both read and write.
//!
//! ## Nested register maps
//! Register-map definitions can be nested arbitrarily:
//! ```
//! # mod yoo {
//! # use reg_map::RegMap;
//! # #[derive(RegMap, Default)]
//! # #[repr(C)]
//! # struct Basic {
//! # field: u64,
//! # }
//! #[derive(RegMap)]
//! #[repr(C)]
//! struct Outer {
//! outer: u64,
//! inner: Basic,
//! }
//! # } // mod yoo
//! ```
//! will generate pointer types with the following abridged code:
//! ```ignore
//! struct OuterPtr<'a> { ... };
//! impl<'a> OuterPtr<'a> {
//! fn outer(&self) -> Reg<'a, u64, ReadWrite> { ... }
//! fn inner(&self) -> BasicPtr<'a> { ... }
//! }
//! ```
//! where `Basic` and `BasicPtr` are shown in the previous section.
//!
//! ## Arrays of registers
//! Fixed-size arrays of registers are also supported, with both basic and nested registers.
//! ```
//! # mod yoo {
//! # use reg_map::RegMap;
//! # #[derive(RegMap, Default)]
//! # #[repr(C)]
//! # struct Basic {
//! # field: u64,
//! # }
//! #[derive(RegMap, Default)]
//! #[repr(C)]
//! struct Many {
//! basic: [u64; 32],
//! nested: [Basic; 16],
//! }
//! # } // mod yoo
//! ```
//! generates the following abridged code:
//! ```ignore
//! struct ManyPtr<'a> { ... };
//! impl<'a> ManyPtr<'a> {
//! fn basic(&self) -> RegArray<'a, Reg<'a, u64, ReadWrite>, 32> { ... }
//! fn nested(&self) -> RegArray<'a, BasicPtr<'a>, 16> { ... }
//! }
//! ```
//! where the access to the arrays of registers are provided by the [`RegArray`] type.
//!
//! Multidimensional arrays are also supported:
//! ```
//! # mod yoo {
//! # use reg_map::RegMap;
//! # #[derive(RegMap)]
//! # #[repr(C)]
//! # struct Basic {
//! # field: u64,
//! # }
//! #[derive(RegMap)]
//! #[repr(C)]
//! struct MultiD {
//! basic: [[[[u64; 2]; 3]; 5]; 7],
//! nested: [[[[Basic; 7]; 5]; 3]; 2],
//! }
//! # } // mod yoo
//! ```
//!
//! ### Iterators
//!
//! It is possible to iterate through arrays using the methods [`RegArray::iter`] and
//! [`RegArray::iter_slice`]:
//! ```
//! # mod yoo {
//! # use reg_map::RegMap;
//! # #[derive(RegMap, Default)]
//! # #[repr(C)]
//! # pub struct Basic {
//! # pub field: u64,
//! # }
//! # #[derive(RegMap, Default)]
//! # #[repr(C)]
//! # pub struct Many {
//! # pub basic: [u64; 32],
//! # pub nested: [Basic; 16],
//! # }
//! # } // mod yoo
//! # use yoo::{Many, ManyPtr};
//! let mut reg = Many::default();
//! let ptr = ManyPtr::from_mut(&mut reg);
//!
//! for (i, basic) in ptr.basic().iter().enumerate() {
//! basic.write(i as u64);
//! }
//! for (i, basic) in ptr.basic().iter().enumerate() {
//! assert_eq!(basic.read(), i as u64);
//! }
//!
//! for (j, nested) in ptr.nested().iter_slice(2, 7).rev().enumerate() {
//! nested.field().write(j as u64);
//! }
//! for (j, nested) in ptr.nested().iter().enumerate() {
//! let expected = if (2..7).contains(&j) {
//! 6 - j
//! } else {
//! 0
//! };
//! assert_eq!(nested.field().read(), expected as u64);
//! }
//! ```
//!
//! # Access permissions
//! Access permissions for each register can be specified with the `#[reg()]` attribute, and
//! default to read-write if not specified:
//! ```
//! # mod yoo {
//! # use reg_map::RegMap;
//! #[repr(C)]
//! #[derive(RegMap)]
//! struct Permissions {
//! #[reg(RO)] read_only_register: u64,
//! #[reg(WO)] write_only_register: u64,
//! #[reg(RW)] read_write_register: u64,
//! another_read_only_register: u64,
//! }
//! # } // mod yoo
//! ```
//! Access permission are implemented through the zero-sized structs:
//! - [`ReadOnly`](access::ReadOnly) for read-only registers (`#[reg(RO)]` attribute);
//! - [`WriteOnly`](access::WriteOnly) for write-only registers (`#[reg(WO)]` attribute);
//! - [`ReadWrite`](access::ReadWrite) for read-write registers (`#[reg(RW)]` attribute, or no attribute).
//!
//! Access permission are checked at compile time, as the zero-sized structs above are passed as
//! type parameters to the generic types [`Reg`] and [`RegArray`] upon definition of the derived
//! pointer types. Specifically, the [`write`](Reg::write) is just not defined for a read-only
//! register, and so on.
//!
//! # Type layout and representation
//! The derive macro [`RegMap`] requires the register-map `struct` to have the `C` representation
//! using the `#[repr(C)]` attribute. Higher alignment requirements can be specified with the
//! `#[repr(C, align(x))]` attribute. Other representations are not supported and generate a
//! compile-time error.
//!
//! Example:
//! ```
//! # mod yoo {
//! # use reg_map::RegMap;
//! #[repr(C)]
//! #[derive(RegMap)]
//! struct Base {
//! foo: u32,
//! baz: u32,
//! aligned: Data,
//! }
//! #[repr(C, align(4096))]
//! #[derive(RegMap)]
//! struct Data {
//! data: [u64; 512],
//! }
//! # } // mod yoo
//! ```
//!
//! In summary:
//! - `#[repr(C)]`: The `C` representation is *required*.
//! - Default/`Rust` representation is *not* supported.
//! - `#[repr(transparent)]`: The `transparent` representation is *not* supported.
//! - `#[repr(align(x))]`: *Raising* the alignment of the register map is supported, in combination
//! with the `C` representation.
//! - `#[repr(packed)]`: *Lowering* the alignment of the register map is *not* supported.
//! This is because unaligned reads and writes are not (currently) supported.
//!
//! # Thread safety
//!
//! All reads and writes performed through the pointers derived by [`RegMap`] are volatile. However
//! in Rust, *"just like in C, whether an operation is volatile has no bearing whatsoever on
//! questions involving concurrent access from multiple threads. Volatile accesses behave exactly
//! like non-atomic accesses in that regard."* See safety docs for
//! [`read_volatile`](core::ptr::read_volatile#safety) and
//! [`write_volatile`](core::ptr::write_volatile#safety).
//!
//! There is currently no way in Rust to define memory accesses as both volatile and atomic.
//! Therefore, the pointers derived by [`RegMap`] are generally not thread safe and thus implement
//! neither [`Send`] not [`Sync`].
//!
//! That said, on some platforms and for some use cases, volatile access and relaxed atomic
//! accesses are the same. If you know that is the case, you can `unsafe`ly implement `Send` and
//! `Sync` yourself:
//!
//! ```
//! # mod yoo {
//! # use reg_map::RegMap;
//! #[repr(C)]
//! #[derive(RegMap)]
//! # pub
//! struct IPromiseThisIsThreadSafe {
//! data: u64,
//! }
//! # } // mod yoo
//! # use yoo::IPromiseThisIsThreadSafePtr;
//! // Safety: I did my homework and this is sound on
//! // my platform and for my use case. I promise!
//! unsafe impl Send for IPromiseThisIsThreadSafePtr<'static> {}
//! unsafe impl Sync for IPromiseThisIsThreadSafePtr<'static> {}
//! ```
//!
//! If something goes wrong, that's on you! See also
//! [URLO: Volatile + relaxed atomic load/store](https://users.rust-lang.org/t/volatile-relaxed-atomic-load-store/92792).
//!
//! # Principle of operation
//!
//! The derive macro [`RegMap`] takes as input the definition of a register map (a `struct`), and
//! generates a custom pointer type that is a wrapper around a raw pointer to the original
//! `struct`. This custom pointer provides methods to perform read / write volatile operations on
//! the fields of the register map.
//!
//! Importantly, no references to the original register map need to ever be created. Instead, the
//! derive macro uses the original `struct` definition to calculate the offsets needed for each
//! memory access. The memory accesses are always performed on raw pointers with volatile
//! semantics.
//!
//! Avoiding creation of references to volatile memory is important to ensure soundness, as
//! discussed e.g. in
//! [rust-lang/unsafe-code-guidelines#33](https://github.com/rust-lang/unsafe-code-guidelines/issues/33)
//! and
//! [rust-lang/unsafe-code-guidelines#411](https://github.com/rust-lang/unsafe-code-guidelines/issues/411).
//!
//! ## Sample generated code
//!
//! Some of the content in this section is considered implementation detail and is not subject to
//! stability guarantees. Nonetheless, it might be useful to have a look at the macro-generated
//! code to get a better understanding of the functionality of this crate.
//!
//! A relatively-simple register-map definition:
//! ```
//! # mod yoo {
//! # use reg_map::RegMap;
//! #[repr(C)]
//! #[derive(RegMap)]
//! struct Test {
//! scalar_field: u64,
//! array_field: [u64; 4096],
//! }
//! # } // mod yoo
//! ```
//!
//! generates the following code (comments and docs omitted):
//! ```
//! # mod yoo {
//! #[repr(C)]
//! struct Test {
//! scalar_field: u64,
//! array_field: [u64; 4096],
//! }
//!
//! #[allow(non_snake_case)]
//! mod _mod_Test {
//! use super::*;
//!
//! pub(super) struct TestPtr<'a> {
//! ptr: ::core::ptr::NonNull<Test>,
//! _ref: ::core::marker::PhantomData<&'a Test>,
//! }
//!
//! impl<'a> TestPtr<'a> {
//! #[inline]
//! const unsafe fn from_nonnull(ptr: ::core::ptr::NonNull<Test>) -> Self {
//! Self {
//! ptr,
//! _ref: ::core::marker::PhantomData,
//! }
//! }
//! #[inline]
//! pub const unsafe fn from_ptr(ptr: *mut Test) -> Self {
//! Self::from_nonnull(::core::ptr::NonNull::new_unchecked(ptr))
//! }
//! #[inline]
//! pub fn from_mut(reg: &'a mut Test) -> Self {
//! unsafe { Self::from_ptr(reg) }
//! }
//! #[inline]
//! pub const fn as_ptr(&self) -> *mut Test {
//! self.ptr.as_ptr()
//! }
//! #[inline]
//! pub fn scalar_field(&self) -> ::reg_map::Reg<'a, u64, ::reg_map::access::ReadWrite> {
//! unsafe {
//! ::reg_map::Reg::__MACRO_ONLY__from_ptr(::core::ptr::addr_of_mut!(
//! (*self.as_ptr()).scalar_field
//! ))
//! }
//! }
//! #[inline]
//! pub fn array_field(
//! &self,
//! ) -> ::reg_map::RegArray<'a, ::reg_map::Reg<'a, u64, ::reg_map::access::ReadWrite>, 4096>
//! {
//! unsafe {
//! ::reg_map::RegArray::__MACRO_ONLY__from_ptr(::core::ptr::addr_of_mut!(
//! (*self.as_ptr()).array_field
//! ))
//! }
//! }
//! }
//!
//! unsafe impl<'a> ::reg_map::RegMapPtr<'a> for TestPtr<'a> {
//! type RegMap = Test;
//! #[inline]
//! unsafe fn from_nonnull(ptr: ::core::ptr::NonNull<Self::RegMap>) -> Self {
//! Self::from_nonnull(ptr)
//! }
//! #[inline]
//! unsafe fn from_ptr(ptr: *mut Self::RegMap) -> Self {
//! Self::from_ptr(ptr)
//! }
//! #[inline]
//! fn from_mut(reg: &'a mut Self::RegMap) -> Self {
//! Self::from_mut(reg)
//! }
//! #[inline]
//! fn as_ptr(&self) -> *mut Self::RegMap {
//! self.as_ptr()
//! }
//! }
//! }
//!
//! use _mod_Test::TestPtr;
//! # } // mod yoo
//! ```
//!
//! First of all, the derive macro generates a module `_mod_Test` that contains the generated
//! pointer type `TestPtr`. The reason to define the type inside of a module is to enforce that a
//! new pointer is only created through the `pub` associated functions `from_ptr` and `from_mut`.
//! The defined `TestPtr` type is then re-exported out of the module.
//!
//! `TestPtr` itself is just a wrapper around a [`NonNull`](core::ptr::NonNull) pointer, plus a
//! marker field to signal that it is semantically a `&'a Test`.
//!
//! A new `TestPtr` can be safely constructed from a `&mut Test` through `TestPtr::from_mut`, or
//! `unsafe`ly from a `*mut Test` through `TestPtr::from_ptr`. A raw pointer to the underlying data
//! can be obtained from a live `TestPtr` with the method `TestPtr::as_ptr`.
//!
//! The juice of the generated code are the `TestPtr::scalar_field` and `TestPtr::array_field`
//! methods, which use [`addr_of_mut!`](core::ptr::addr_of_mut) to return a [`Reg`] and a
//! [`RegArray`], respectively. These provide read / write volatile access without ever creating a
//! reference to the underlying data.
//!
//! Finally, the generated code implements the [`RegMapPtr`] trait on `TestPtr` so that it can be
//! stored in a [`RegArray`], if needed.
//!
//! # Comparison with other crates
//!
//! ## `volatile`
//! The crate [volatile](https://lib.rs/crates/volatile) uses the same principle of operation as
//! this crate, `reg-map`: a custom pointer type is defined to perform volatile read /write
//! operations to the underlying memory.
//!
//! In fact, `reg-map` is heavily inspired by `volatile`! Differences are mainly ergonomic and in
//! the exposed API surface.
//!
//! ## `volatile-register`
//! The crate [volatile-register](https://lib.rs/crates/volatile-register), based on
//! [vcell](https://lib.rs/crates/vcell), exposes a very clean API by providing a wrapper type that
//! owns the data. In practice, it offers a `VolatileCell` which is *"just like
//! [`Cell`](core::cell::Cell) but with volatile read / write operations"*.
//!
//! Unfortunately, this approach is unsound. See [rust-lang/unsafe-code-guidelines#33: What about: volatile accesses and memory-mapped IO](https://github.com/rust-lang/unsafe-code-guidelines/issues/33)
//! for details. Long story short, every time there is a `&UnsafeCell<T>`, the compiler is allowed
//! to insert spurious reads and writes. That is fine for "normal memory", but with volatile memory
//! and memory-mapped IO reads and writes have side effects so this problematic.
//!
//! This crate, `reg-map`, does not use `UnsafeCell` and never creates references to the volatile
//! memory, avoiding the soundness issue above.
//!
//! For the cases where the `volatile-register` approach happens to work, the assembly generated by
//! the two approaches is identical.
//!
//! # Further reading
//!
//! Some links to relevant forum threads and GitHub issues:
//! - [URLO: How to make an access volatile without std library?](https://users.rust-lang.org/t/how-to-make-an-access-volatile-without-std-library/85533)
//! - [URLO: Volatile + relaxed atomic load/store](https://users.rust-lang.org/t/volatile-relaxed-atomic-load-store/92792)
//! - [URLO: Why are memory mapped registers implemented with interior mutability?](https://users.rust-lang.org/t/why-are-memory-mapped-registers-implemented-with-interior-mutability/116119)
//! - [rust-embedded/volatile-register#10: Usage of references is in conflict with use for MMIO](https://github.com/rust-embedded/volatile-register/issues/10)
//! - [rust-lang/unsafe-code-guidelines#33: What about: volatile accesses and memory-mapped IO](https://github.com/rust-lang/unsafe-code-guidelines/issues/33)
//! - [rust-lang/unsafe-code-guidelines#411: Can we have VolatileCell](https://github.com/rust-lang/unsafe-code-guidelines/issues/411)
#![no_std]
/// Derive macro to generate a pointer to a register map with volatile reads and writes.
///
/// See the [top-level documentation](crate) for usage information and examples.
pub use reg_map_derive::RegMap;
pub mod access;
mod arr;
pub use arr::{ArrayElem, RegArray};
mod bounds;
pub mod integers;
mod iter;
mod reg;
pub use reg::{Reg, RegMapPtr};