1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/// Context structs involved during composition rendering.
pub mod context;

/// Basic n-ary tree implementation.
pub mod tree;

use crate::error::RendererError;

use std::fmt::Formatter;
use std::iter::successors;
use std::ops::Deref;
use std::{any::TypeId, collections::HashMap, fmt::Debug, ops::Add};
use Vec;

use crate::{Element, Segment, SegmentRef};

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

use crate::render::context::CompositionContext;

/// [`Result`](std::result::Result) with a default error type of [`RendererError`].
pub type Result<T, E = RendererError> = std::result::Result<T, E>;

/// Defines render behavior for a specific [`Element`](Self::Element).
///
/// Every render operation during composition receives a
/// [`SegmentRef<Self::Element>`](crate::SegmentRef<Self::Element>) with
/// [`CompositionContext`] and may return [`Vec<Segment`>] on success, or
/// [`RendererError::MissingContext`] in the case that its render dependencies are not satisfied
/// (which will be retried later).
pub trait Renderer {
    /// The particular [`Element`] this [`Renderer`] renders.
    type Element: Element;

    /// Renderers a [`SegmentRef<Self::Element>`] with [`CompositionContext`], returning additional
    /// [`Segment`]s as children.
    fn render(
        &self,
        segment: SegmentRef<Self::Element>,
        context: CompositionContext,
    ) -> Result<Vec<Segment>>;
}

/// Wraps a [`Segment`] with additional render-related information.
#[derive(Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct RenderSegment {
    /// The wrapped [`Segment`].
    #[cfg_attr(feature = "serde", serde(flatten))]
    pub segment: Segment,
    /// Seed used for [`CompositionContext`] rng when this segment is rendered.
    pub seed: u64,
    /// Initially `false`, becoming `true` only after this segment has been successfully rendered.
    pub rendered: bool,
    /// Stores the latest encountered [`RendererError`] for debugging.
    #[cfg_attr(feature = "serde", serde(skip_serializing_if = "Option::is_none"))]
    pub error: Option<RendererError>,
}

/// Implements a [`Renderer`] via a wrapped closure.
///
/// Most commonly used to implement a [`Renderer`] which does not require its own struct/state.
///
/// ```
/// # use serde::{Deserialize, Serialize};
/// # use redact_composer_core::derive::Element;
/// # use redact_composer_core::elements::PlayNote;
/// # use redact_composer_core::IntoSegment;
/// # use redact_composer_core::render::AdhocRenderer;
/// # #[derive(Element, Debug, Serialize, Deserialize)]
/// # struct SomeElement;
/// let renderer = AdhocRenderer::<SomeElement>::new(|segment, context| {
///     Ok(vec![
///         PlayNote {note: 60, velocity: 100 }
///         .over(segment.timing)
///     ])
/// });
/// ```
#[allow(missing_debug_implementations)] // TODO
pub struct AdhocRenderer<T: Element> {
    /// Closure implementing the signature of
    /// [`Renderer::render`](crate::render::Renderer::render).
    #[allow(clippy::type_complexity)]
    func: Box<dyn Fn(SegmentRef<T>, CompositionContext) -> Result<Vec<Segment>>>,
}

impl<T: Element> AdhocRenderer<T> {
    /// Creates an [`AdhocRenderer`] from a closure.
    pub fn new(
        func: impl Fn(SegmentRef<T>, CompositionContext) -> Result<Vec<Segment>> + 'static,
    ) -> AdhocRenderer<T> {
        AdhocRenderer {
            func: Box::new(func),
        }
    }
}

impl<T: Element> Renderer for AdhocRenderer<T> {
    type Element = T;

    /// Renders a [`Element`] by calling the [`AdhocRenderer`]s wrapped closure.
    fn render(
        &self,
        segment: SegmentRef<Self::Element>,
        context: CompositionContext,
    ) -> Result<Vec<Segment>> {
        (self.func)(segment, context)
    }
}

/// A group of [`Renderer`]s for a single [`Renderer::Element`]. This group is itself a
/// [`Renderer`] which renders as a unit, returning [`crate::error::RendererError`] if any of its
/// [`Renderer`]s do.
#[allow(missing_debug_implementations)] // TODO
pub struct RendererGroup<T> {
    /// The renderers of this group.
    pub renderers: Vec<Box<dyn Renderer<Element = T>>>,
}

impl<T> RendererGroup<T> {
    /// Creates an empty [`RendererGroup`].
    pub fn new() -> RendererGroup<T> {
        RendererGroup { renderers: vec![] }
    }
}

impl<T> Default for RendererGroup<T> {
    fn default() -> Self {
        RendererGroup::new()
    }
}

impl<T, R> Add<R> for RendererGroup<T>
where
    R: Renderer<Element = T> + 'static,
{
    type Output = Self;

    fn add(mut self, rhs: R) -> Self::Output {
        self.renderers.push(Box::new(rhs));

        self
    }
}

impl<T: Element> Renderer for RendererGroup<T> {
    type Element = T;

    fn render(
        &self,
        segment: SegmentRef<Self::Element>,
        context: CompositionContext,
    ) -> Result<Vec<Segment>> {
        let mut result_children = vec![];

        for renderer in &self.renderers {
            result_children.append(&mut renderer.render(segment, context)?);
        }

        Ok(result_children)
    }
}

trait ErasedRenderer {
    fn render(&self, segment: &Segment, context: CompositionContext) -> Result<Vec<Segment>>;
}

impl<T: Renderer> ErasedRenderer for T {
    fn render(&self, segment: &Segment, context: CompositionContext) -> Result<Vec<Segment>> {
        self.render(segment.try_into()?, context)
    }
}

/// A mapping of [`Element`] to [`Renderer`]s used to delegate rendering of generic
/// [`Segment`]s via their [`Element`]. Only one [`Renderer`] per type is
/// allowed in the current implementation.
#[allow(missing_debug_implementations)] // TODO
#[derive(Default)]
pub struct RenderEngine {
    renderers: HashMap<TypeId, Box<dyn ErasedRenderer>>,
}

impl Debug for RenderEngine {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        // TODO
        write!(f, "RenderEngine {{ /* TODO */ }}")
    }
}

impl RenderEngine {
    /// Creates an empty [`RenderEngine`].
    pub fn new() -> RenderEngine {
        RenderEngine {
            renderers: HashMap::new(),
        }
    }

    /// Adds a [`Renderer`] to this [`RenderEngine`], replacing any existing [`Renderer`] for
    /// the corresponding [`Renderer::Element`].
    pub fn add_renderer<R: Renderer + 'static>(&mut self, renderer: R) {
        self.renderers
            .insert(TypeId::of::<R::Element>(), Box::new(renderer));
    }

    /// Returns the [`Renderer`] corresponding to the given [`&dyn Element`], if one exists.
    fn renderer_for(&self, element: &dyn Element) -> Option<&dyn ErasedRenderer> {
        self.renderers
            .get(&element.as_any().type_id())
            .map(Box::deref)
    }

    /// Determines if this [`RenderEngine`] can render a given `&dyn` [`Element`]. (i.e. whether
    /// it has a mapped renderer for the given `&dyn` [`Element`])
    ///
    /// This checks not only the given `&dyn` [`Element`], but also any types it wraps.
    pub fn can_render(&self, element: &dyn Element) -> bool {
        successors(Some(element), |&s| s.wrapped_element()).any(|s| self.can_render_specific(s))
    }

    /// Determines if this [`RenderEngine`] can render a given `&dyn` [`Element`]. Only checks
    /// the given type, ignoring any wrapped types (unlike [`Self::can_render`]).
    pub fn can_render_specific(&self, element: &dyn Element) -> bool {
        self.renderers.contains_key(&element.as_any().type_id())
    }

    /// Renders a [`Element`] over a given time range with supplied context, delegating to
    /// [`Renderer`]s mapped to its type and wrapped types if any. If no mapped [`Renderer`]
    /// for the type or wrapped types exists, [`None`] is returned.
    pub fn render(
        &self,
        segment: &Segment,
        context: CompositionContext,
    ) -> Option<Result<Vec<Segment>>> {
        let renderables = successors(Some(&*segment.element), |&s| s.wrapped_element())
            .filter(|s| self.can_render_specific(*s))
            .collect::<Vec<_>>();

        if renderables.is_empty() {
            None
        } else {
            let mut generated_segments = vec![];

            for renderable in renderables {
                if let Some(renderer) = self.renderer_for(renderable) {
                    let result = renderer.render(segment, context);

                    if let Ok(mut segments) = result {
                        generated_segments.append(&mut segments);
                    } else {
                        return Some(result);
                    }
                }
            }

            Some(Ok(generated_segments))
        }
    }
}

impl<R, S> Add<R> for RenderEngine
where
    R: Renderer<Element = S> + 'static,
    S: Element,
{
    type Output = Self;

    fn add(mut self, rhs: R) -> Self::Output {
        self.add_renderer(rhs);

        self
    }
}

impl Add<RenderEngine> for RenderEngine {
    type Output = Self;

    fn add(mut self, rhs: RenderEngine) -> Self::Output {
        self.renderers.extend(rhs.renderers);

        self
    }
}