1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
use std::fmt::Debug;
use std::ops::Index;

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

#[derive(Debug)]
/// An index based n-ary tree node.
pub struct Node<T> {
    /// Index of this node.
    pub idx: usize,
    /// Contained value of this node.
    pub value: T,
    /// This node's parent index as an [`Option`], or [`None`] if it is a root.
    pub parent: Option<usize>,
    /// The indices of this node's children.
    pub children: Vec<usize>,
}

#[derive(Debug)]
/// An n-ary index-based tree.
pub struct Tree<T> {
    nodes: Vec<Node<T>>,
}

impl<T> Tree<T> {
    /// Creates an empty tree.
    pub fn new() -> Tree<T> {
        Tree { nodes: vec![] }
    }

    /// The number of nodes in the tree.
    pub fn len(&self) -> usize {
        self.nodes.len()
    }

    /// Returns `true` iff the tree is empty.
    pub fn is_empty(&self) -> bool {
        self.nodes.is_empty()
    }

    /// Returns this tree's root, or [`None`] if it is empty.
    pub fn root(&self) -> Option<&Node<T>> {
        self.get(0)
    }

    /// Gets a node by it's index.
    pub fn get(&self, idx: usize) -> Option<&Node<T>> {
        self.nodes.get(idx)
    }

    /// Iterates a subtree starting from a given node. Order is not guaranteed.
    pub fn node_iter<'a>(&'a self, start: &'a Node<T>) -> NodeIter<T> {
        NodeIter {
            tree: self,
            idx_idx: 0,
            idxs: vec![&start.idx],
            skip: None,
        }
    }

    /// Iterates a subtree, skipping indices contained in `skip`.
    pub fn node_iter_with_skip<'a>(&'a self, start: &'a Node<T>, skip: Vec<usize>) -> NodeIter<T> {
        NodeIter {
            tree: self,
            idx_idx: 0,
            idxs: vec![&start.idx],
            skip: Some(skip),
        }
    }

    /// Returns a node iterator starting from the tree's root. Order is not guaranteed.
    pub fn iter(&self) -> NodeIter<T> {
        match self.root() {
            Some(root) => self.node_iter(root),
            None => NodeIter {
                tree: self,
                idx_idx: 0,
                idxs: vec![],
                skip: None,
            },
        }
    }

    /// Inserts a new value in this tree as a child of the `parent_idx` node.
    pub fn insert(&mut self, item: T, parent_idx: Option<usize>) -> usize {
        let new_idx = self.nodes.len();
        self.nodes.push(Node {
            idx: new_idx,
            parent: parent_idx,
            value: item,
            children: vec![],
        });

        if let Some(parent_idx) = parent_idx {
            self.nodes[parent_idx].children.push(new_idx);
        }

        new_idx
    }
}

impl<T> Default for Tree<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<'a, T> IntoIterator for &'a Tree<T> {
    type Item = &'a Node<T>;

    type IntoIter = NodeIter<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

/// A node iterator with optional `skip` indices.
#[derive(Debug)]
pub struct NodeIter<'a, T> {
    tree: &'a Tree<T>,
    idx_idx: usize,
    idxs: Vec<&'a usize>,
    skip: Option<Vec<usize>>,
}

impl<'a, T> Iterator for NodeIter<'a, T> {
    type Item = &'a Node<T>;

    fn next(&mut self) -> Option<Self::Item> {
        match self.idxs.get(self.idx_idx) {
            Some(idx) => {
                let ret = &self.tree.nodes[**idx];
                self.idxs.append(
                    &mut ret
                        .children
                        .iter()
                        .filter(|n| {
                            if let Some(skip) = &self.skip {
                                !skip.contains(n)
                            } else {
                                true
                            }
                        })
                        .collect(),
                );
                self.idx_idx += 1;

                Some(ret)
            }
            None => None,
        }
    }
}

impl<Idx: std::slice::SliceIndex<[Node<T>]>, T> Index<Idx> for Tree<T> {
    type Output = Idx::Output;

    fn index(&self, index: Idx) -> &Self::Output {
        &self.nodes[index]
    }
}

impl<Idx: std::slice::SliceIndex<[Node<T>]>, T> std::ops::IndexMut<Idx> for Tree<T> {
    fn index_mut(&mut self, index: Idx) -> &mut Self::Output {
        &mut self.nodes[index]
    }
}

#[cfg(feature = "serde")]
impl<T> Serialize for Tree<T>
where
    T: Serialize,
{
    fn serialize<S>(&self, serializer: S) -> crate::render::Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        SerializeHelperNode::from((&self[0], self)).serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'de, T> Deserialize<'de> for Tree<T>
where
    T: Deserialize<'de> + Debug,
{
    fn deserialize<D>(deserializer: D) -> crate::render::Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        Ok(DeserializeHelperNode::deserialize(deserializer)?.into())
    }
}

// Private serialization helper struct
#[cfg(feature = "serde")]
#[cfg_attr(feature = "serde", derive(Serialize))]
struct SerializeHelperNode<'a, T> {
    #[cfg_attr(feature = "serde", serde(flatten))]
    pub val: &'a T,
    #[cfg_attr(feature = "serde", serde(skip_serializing_if = "Vec::is_empty"))]
    pub children: Vec<SerializeHelperNode<'a, T>>,
}

#[cfg(feature = "serde")]
#[cfg_attr(feature = "serde", derive(Deserialize))]
struct DeserializeHelperNode<T> {
    #[cfg_attr(feature = "serde", serde(flatten))]
    pub val: T,
    #[cfg_attr(feature = "serde", serde(default = "Vec::new"))]
    pub children: Vec<DeserializeHelperNode<T>>,
}

#[cfg(feature = "serde")]
impl<'a, T> From<(&'a Node<T>, &'a Tree<T>)> for SerializeHelperNode<'a, T> {
    fn from(value: (&'a Node<T>, &'a Tree<T>)) -> SerializeHelperNode<'a, T> {
        let (node, tree) = value;
        SerializeHelperNode {
            val: &node.value,
            children: node
                .children
                .iter()
                .map(|n| SerializeHelperNode::from((&tree[*n], tree)))
                .collect::<Vec<_>>(),
        }
    }
}

#[cfg(feature = "serde")]
impl<T> From<DeserializeHelperNode<T>> for Tree<T> {
    fn from(value: DeserializeHelperNode<T>) -> Self {
        let mut nodes_to_add = vec![(0_usize, value, None)];
        let mut nodes = vec![];
        let mut id_counter = 1;

        while !nodes_to_add.is_empty() {
            let mut next_nodes = nodes_to_add
                .drain(..)
                .flat_map(|(idx, n, parent)| {
                    let (value, children) = (n.val, n.children);

                    let child_idx_range = id_counter..(id_counter + children.len());
                    id_counter += children.len();

                    nodes.push(Node {
                        idx,
                        value,
                        parent,
                        children: child_idx_range.clone().collect(),
                    });

                    child_idx_range
                        .zip(children.into_iter())
                        .map(move |(child_idx, child_node)| (child_idx, child_node, Some(idx)))
                })
                .collect::<Vec<_>>();

            nodes_to_add.append(&mut next_nodes);
        }

        Tree { nodes }
    }
}