1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
use crate::derive::Element;
use std::collections::Bound;
use std::collections::Bound::{Excluded, Included, Unbounded};
use std::ops::{Range, RangeBounds};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// The default beat length which divides evenly for many common factors.
pub const STANDARD_BEAT_LENGTH: i32 = 480;
/// Higher precision beat length if greater divisibility is required.
pub const HIGH_PRECISION_BEAT_LENGTH: i32 = 960;
/// Types implementing [`Element`].
pub mod elements {
pub use super::Tempo;
}
/// The speed of a (or part of a) composition in beats per minute.
#[derive(Element, Debug, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Tempo {
pub(super) bpm: u32,
}
impl Tempo {
/// Creates a [`Tempo`] from beats per measure.
pub fn from_bpm(bpm: u32) -> Tempo {
Tempo { bpm }
}
/// Returns this tempo with units of microseconds per beat.
pub fn microseconds_per_beat(&self) -> u32 {
60_000_000 / self.bpm
}
/// Returns this tempo with units of beats per minute.
pub fn bpm(&self) -> u32 {
self.bpm
}
}
/// A start-inclusive, end-exclusive [`i32`] range (like [`Range<i32>`]) that is copyable,
/// and implements several utility methods.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Timing {
/// The inclusive start of this interval.
pub start: i32,
/// The exclusive end of this interval.
pub end: i32,
}
impl RangeBounds<i32> for Timing {
fn start_bound(&self) -> Bound<&i32> {
Bound::Included(&self.start)
}
fn end_bound(&self) -> Bound<&i32> {
Bound::Excluded(&self.end)
}
}
impl From<&Timing> for Timing {
fn from(value: &Timing) -> Self {
*value
}
}
impl From<Range<i32>> for Timing {
fn from(value: Range<i32>) -> Self {
Self {
start: value.start,
end: value.end,
}
}
}
impl From<&Range<i32>> for Timing {
fn from(value: &Range<i32>) -> Self {
Self {
start: value.start,
end: value.end,
}
}
}
impl From<Timing> for Range<i32> {
fn from(value: Timing) -> Self {
value.start..value.end
}
}
impl From<&Timing> for Range<i32> {
fn from(value: &Timing) -> Self {
value.start..value.end
}
}
impl Timing {
/// Returns the length of this timing (`self.end` - `self.start`).
pub fn len(&self) -> i32 {
self.end - self.start
}
/// Splits this timing into sequentual pieces of a given `size`.
/// Returns the resulting `Vec`.
/// ```
/// # use redact_composer_core::timing::Timing;
/// let split = Timing::from(0..10).divide_into(5);
/// assert_eq!(split[0], Timing::from(0..5));
/// assert_eq!(split[1], Timing::from(5..10));
/// ```
#[inline]
pub fn divide_into(&self, size: i32) -> Vec<Timing> {
<Range<i32>>::from(self)
.step_by(size as usize)
.scan((0, self.start), |s, _| {
s.0 = s.1;
s.1 = s.0 + size;
Some(s.0..s.1)
})
.map(Timing::from)
.collect::<Vec<_>>()
}
/// Returns a new [`Timing`] with start/end shifted by the given `amount`.
/// ```
/// # use redact_composer_core::timing::Timing;
/// assert_eq!(Timing::from(0..10).shifted_by(10), Timing::from(10..20))
/// ```
#[inline]
pub fn shifted_by(&self, amount: i32) -> Timing {
Self {
start: self.start + amount,
end: self.end + amount,
}
}
/// Returns a new [`Timing`] with the start shifted by the given `amount`.
/// ```
/// # use redact_composer_core::timing::Timing;
/// assert_eq!(Timing::from(0..10).start_shifted_by(5), Timing::from(5..10))
/// ```
#[inline]
pub fn start_shifted_by(&self, amount: i32) -> Timing {
Self {
start: self.start + amount,
end: self.end,
}
}
/// Returns a new [`Timing`] with the end shifted by the given `amount`.
/// ```
/// # use redact_composer_core::timing::Timing;
/// assert_eq!(Timing::from(0..10).end_shifted_by(-5), Timing::from(0..5))
/// ```
#[inline]
pub fn end_shifted_by(&self, amount: i32) -> Timing {
Self {
start: self.start,
end: self.end + amount,
}
}
// Passthrough impls for RangeBounds<i32> so the trait doesn't need to be `use`ed.
/// Checks if a particular `&i32` is contained in this [`Timing`].
/// ```
/// # use redact_composer_core::timing::Timing;
/// assert_eq!(Timing::from(1..10).contains(&1), true);
/// assert_eq!(Timing::from(1..10).contains(&10), false);
/// ```
pub fn contains(&self, item: &i32) -> bool {
<Self as RangeBounds<i32>>::contains(self, item)
}
// Passthrough impls for RangeChecks so the trait doesn't need to be `use`ed.
/// Checks if this [`Timing`] is empty (including negative).
/// ```
/// # use redact_composer_core::timing::Timing;
/// assert_eq!(Timing::from(1..1).is_empty(), true);
/// assert_eq!(Timing::from(1..0).is_empty(), true);
/// assert_eq!(Timing::from(1..2).is_empty(), false);
/// ```
#[inline]
pub fn is_empty(&self) -> bool {
RangeOps::is_empty(self)
}
/// Checks if this [`Timing`] is before some other [`Timing`] (or other [`RangeBounds<i32>`]).
/// ```
/// # use redact_composer_core::timing::Timing;
/// assert_eq!(Timing::from(0..1).is_before(&Timing::from(1..2)), true);
/// assert_eq!(Timing::from(1..2).is_before(&Timing::from(0..1)), false);
/// ```
#[inline]
pub fn is_before(&self, other: &impl RangeBounds<i32>) -> bool {
RangeOps::is_before(self, other)
}
/// Checks if this [`Timing`] is after some other [`Timing`] (or other [`RangeBounds<i32>`]).
/// ```
/// # use redact_composer_core::timing::Timing;
/// assert_eq!(Timing::from(0..1).is_after(&Timing::from(1..2)), false);
/// assert_eq!(Timing::from(1..2).is_after(&Timing::from(0..1)), true);
/// ```
#[inline]
pub fn is_after(&self, other: &impl RangeBounds<i32>) -> bool {
RangeOps::is_after(self, other)
}
/// Checks if this [`Timing`] does not overlap with another [`Timing`] (or other
/// [`RangeBounds<i32>`]).
/// ```
/// # use redact_composer_core::timing::Timing;
/// assert_eq!(Timing::from(0..2).is_disjoint_from(&Timing::from(2..3)), true);
/// assert_eq!(Timing::from(0..2).is_disjoint_from(&Timing::from(1..3)), false);
/// ```
#[inline]
pub fn is_disjoint_from(&self, other: &impl RangeBounds<i32>) -> bool {
RangeOps::is_disjoint_from(self, other)
}
/// Checks if this [`Timing`] overlaps with another [`Timing`] (or other [`RangeBounds<i32>`]).
/// ```
/// # use redact_composer_core::timing::Timing;
/// assert_eq!(Timing::from(0..2).intersects(&Timing::from(1..3)), true);
/// assert_eq!(Timing::from(0..2).intersects(&Timing::from(2..3)), false);
/// ```
#[inline]
pub fn intersects(&self, other: &impl RangeBounds<i32>) -> bool {
RangeOps::intersects(self, other)
}
/// Checks if this [`Timing`] contains another [`Timing`] (or other [`RangeBounds<i32>`]).
/// ```
/// # use redact_composer_core::timing::Timing;
/// assert_eq!(Timing::from(0..2).contains_range(&Timing::from(0..1)), true);
/// assert_eq!(Timing::from(0..2).contains_range(&Timing::from(1..3)), false);
/// ```
#[inline]
pub fn contains_range(&self, other: &impl RangeBounds<i32>) -> bool {
RangeOps::contains_range(self, other)
}
/// Checks if this [`Timing`] is contained by another [`Timing`] (or other
/// [`RangeBounds<i32>`]).
/// ```
/// # use redact_composer_core::timing::Timing;
/// assert_eq!(Timing::from(0..2).is_contained_by(&Timing::from(0..3)), true);
/// assert_eq!(Timing::from(0..2).is_contained_by(&Timing::from(0..1)), false);
/// ```
#[inline]
pub fn is_contained_by(&self, other: &impl RangeBounds<i32>) -> bool {
RangeOps::is_contained_by(self, other)
}
/// Checks if this [`Timing`] begins within another [`Timing`] (or other [`RangeBounds<i32>`]).
/// ```
/// # use redact_composer_core::timing::Timing;
/// assert_eq!(Timing::from(0..1).begins_within(&Timing::from(0..2)), true);
/// assert_eq!(Timing::from(0..1).begins_within(&Timing::from(1..2)), false);
/// ```
#[inline]
pub fn begins_within(&self, other: &impl RangeBounds<i32>) -> bool {
RangeOps::begins_within(self, other)
}
/// Checks if this [`Timing`] ends within another [`Timing`] (or other [`RangeBounds<i32>`]).
/// ```
/// # use redact_composer_core::timing::Timing;
/// assert_eq!(Timing::from(0..2).ends_within(&Timing::from(0..2)), true);
/// assert_eq!(Timing::from(0..2).ends_within(&Timing::from(0..1)), false);
/// ```
#[inline]
pub fn ends_within(&self, other: &impl RangeBounds<i32>) -> bool {
RangeOps::ends_within(self, other)
}
}
/// Convenient interval comparisons.
pub trait RangeOps<T>: RangeBounds<T> {
/// Checks if an interval is empty.
fn is_empty(&self) -> bool;
/// Checks if an interval has no overlap with another.
fn is_disjoint_from(&self, other: &impl RangeBounds<T>) -> bool;
/// Checks if this interval has some overlap with another.
fn intersects(&self, other: &impl RangeBounds<T>) -> bool;
/// Checks if this interval ends before the start of another.
fn is_before(&self, other: &impl RangeBounds<T>) -> bool;
/// Checks if this interval starts after the end of another.
fn is_after(&self, other: &impl RangeBounds<T>) -> bool;
/// Checks if this interval starts within another.
fn begins_within(&self, other: &impl RangeBounds<T>) -> bool;
/// Checks if this interval ends within another.
fn ends_within(&self, other: &impl RangeBounds<T>) -> bool;
/// Checks if this interval contains another.
fn contains_range(&self, other: &impl RangeBounds<T>) -> bool;
/// Checks if this interval is contained by another.
fn is_contained_by(&self, other: &impl RangeBounds<T>) -> bool;
}
impl<T, R> RangeOps<T> for R
where
T: PartialOrd,
R: RangeBounds<T>,
{
#[inline]
fn is_empty(&self) -> bool {
match (self.start_bound(), self.end_bound()) {
(Included(s), Excluded(e))
| (Excluded(s), Included(e))
| (Excluded(s), Excluded(e)) => e <= s,
(Included(s), Included(e)) => e < s,
(Included(_), Unbounded)
| (Excluded(_), Unbounded)
| (Unbounded, Included(_))
| (Unbounded, Excluded(_))
| (Unbounded, Unbounded) => false,
}
}
#[inline]
fn is_before(&self, other: &impl RangeBounds<T>) -> bool {
<(Bound<&T>, Bound<&T>) as RangeOps<T>>::is_empty(&(other.start_bound(), self.end_bound()))
}
#[inline]
fn is_after(&self, other: &impl RangeBounds<T>) -> bool {
<(Bound<&T>, Bound<&T>) as RangeOps<T>>::is_empty(&(self.start_bound(), other.end_bound()))
}
#[inline]
fn is_disjoint_from(&self, other: &impl RangeBounds<T>) -> bool {
self.is_before(other) || self.is_after(other)
}
#[inline]
fn intersects(&self, other: &impl RangeBounds<T>) -> bool {
!self.is_disjoint_from(other)
}
#[inline]
fn contains_range(&self, other: &impl RangeBounds<T>) -> bool {
(match self.end_bound() {
Included(b) => other.is_before(&(Excluded(b), Unbounded)),
Excluded(b) => other.is_before(&(Included(b), Unbounded)),
Unbounded => true,
} && match self.start_bound() {
Included(b) => other.is_after(&(Unbounded, Excluded(b))),
Excluded(b) => other.is_after(&(Unbounded, Included(b))),
Unbounded => true,
})
}
#[inline]
fn is_contained_by(&self, other: &impl RangeBounds<T>) -> bool {
other.contains_range(self)
}
#[inline]
fn begins_within(&self, other: &impl RangeBounds<T>) -> bool {
!self.is_after(other) && other.contains_range(&(self.start_bound(), other.end_bound()))
}
#[inline]
fn ends_within(&self, other: &impl RangeBounds<T>) -> bool {
!self.is_before(other) && other.contains_range(&(other.start_bound(), self.end_bound()))
}
}
/// Convenience methods for `[Vec<Timing>]`.
pub trait TimingSequenceUtil {
/// Joins the sequence of `Timing`s, merging overlapping/continuous regions.
fn join(&self) -> Vec<Timing>;
}
impl TimingSequenceUtil for Vec<Timing> {
/// Joins a sequence of [`Timing`]s. Overlapping or continuously sequential
/// (i.e. end == start) are merged and the resulting sequence is returned.
/// ```
/// # use redact_composer_core::timing::Timing;
/// # use redact_composer_core::timing::TimingSequenceUtil;
/// assert_eq!(
/// vec![Timing::from(0..4), Timing::from(2..5), Timing::from(6..10)].join(),
/// vec![Timing::from(0..5), Timing::from(6..10)]
/// );
/// ```
fn join(&self) -> Vec<Timing> {
if let Some(first) = self.first().copied() {
let mut joined = vec![first];
for next in (0..self.len()).skip(1) {
let joined_len = joined.len();
if joined[joined_len - 1].contains(&self[next].start)
|| joined[joined_len - 1].end == self[next].start
{
joined[joined_len - 1].end = self[next].end;
} else {
joined.push(Timing::from(self[next].start..self[next].end));
}
}
joined
} else {
vec![]
}
}
}