rect_lib/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
use core::cmp::Reverse;
use num::{Num, One};
// re-export the num crate
pub use num;
// basic rectangle
mod basic_rectangle;
pub use basic_rectangle::BasicRectangle;
/// A trait containing methods for rectangle like data structures which implement `Sized` & `Copy`.
///
/// This trait treats all edges (left, right, top, & bottom) as inclusive.
///
/// # Example
/// ```
/// use rect_lib::Rectangle;
///
/// #[derive(Clone, Copy)]
/// pub struct BasicRectangle {
/// x: i32,
/// y: i32,
/// width: i32,
/// height: i32,
/// }
///
/// impl Rectangle for BasicRectangle {
/// type Unit = i32;
///
/// fn left(&self) -> i32 {
/// self.x
/// }
///
/// fn right(&self) -> i32 {
/// self.x + self.width - 1
/// }
///
/// fn top(&self) -> i32 {
/// self.y
/// }
///
/// fn bottom(&self) -> i32 {
/// self.y - self.height + 1
/// }
///
/// fn new_from_sides(left: i32, right: i32, top: i32, bottom: i32) -> Self {
/// Self {
/// x: left,
/// y: top,
/// width: right - left + 1,
/// height: top - bottom + 1,
/// }
/// }
/// }
/// ```
pub trait Rectangle
where
Self: Sized + Copy,
{
// - Required implementations.
/// The unit type used for the rectangle.
type Unit: Num + One + Copy + PartialEq + PartialOrd + Ord;
/// The left most point of the rectangle.
///
/// # Example
/// ```
/// use rect_lib::{BasicRectangle, Rectangle};
///
/// let rect = BasicRectangle::new_from_sides(0, 1, 2, 3);
/// assert_eq!(rect.left(), 0);
/// ````
fn left(&self) -> Self::Unit;
/// The right most point of the rectangle.
///
/// # Example
/// ```
/// use rect_lib::{BasicRectangle, Rectangle};
///
/// let rect = BasicRectangle::new_from_sides(0, 1, 2, 3);
/// assert_eq!(rect.right(), 1);
/// ```
fn right(&self) -> Self::Unit;
/// The top most point of the rectangle.
///
/// # Example
/// ```
/// use rect_lib::{BasicRectangle, Rectangle};
///
/// let rect = BasicRectangle::new_from_sides(0, 1, 2, 3);
/// assert_eq!(rect.top(), 2);
/// ```
fn top(&self) -> Self::Unit;
/// The bottom most point of the rectangle.
///
/// # Example
/// ```
/// use rect_lib::{BasicRectangle, Rectangle};
///
/// let rect = BasicRectangle::new_from_sides(0, 1, 2, 3);
/// assert_eq!(rect.bottom(), 3);
/// ```
fn bottom(&self) -> Self::Unit;
/// Creates a new rectangle from the given sides.
/// The sides are inclusive.
///
/// # Example
/// ```
/// use rect_lib::{BasicRectangle, Rectangle};
///
/// let rect = BasicRectangle::new_from_sides(0, 1, 2, 3);
/// ```
fn new_from_sides(
left: Self::Unit,
right: Self::Unit,
top: Self::Unit,
bottom: Self::Unit,
) -> Self;
// - Default implementations.
/// The width of the rectangle.
/// This is calculated as `right - left`.
///
/// # Example
/// ```
/// use rect_lib::{BasicRectangle, Rectangle};
///
/// let rect = BasicRectangle::new_from_sides(0, 1, 1, 0);
/// assert_eq!(rect.width(), 1);
/// ```
fn width(&self) -> Self::Unit {
self.right() - self.left()
}
/// The height of the rectangle.
/// This is calculated as `top - bottom`.
///
/// # Example
/// ```
/// use rect_lib::{BasicRectangle, Rectangle};
///
/// let rect = BasicRectangle::new_from_sides(0, 1, 1, 0);
/// assert_eq!(rect.height(), 1);
/// ```
fn height(&self) -> Self::Unit {
self.top() - self.bottom()
}
/// Translates the rectangle by the given amount.
/// This is done by adding the given amount to the x and y coordinates.
///
/// # Example
/// ```
/// use rect_lib::{BasicRectangle, Rectangle};
///
/// let rect = BasicRectangle::new_from_sides(0, 1, 1, 0);
/// let translated = rect.translate(1, 1);
/// assert_eq!(translated, BasicRectangle::new_from_sides(1, 2, 2, 1));
/// ```
fn translate(&self, x: Self::Unit, y: Self::Unit) -> Self {
Self::new_from_sides(
self.left() + x,
self.right() + x,
self.top() + y,
self.bottom() + y,
)
}
/// The perimeter of the rectangle.
/// This is calculated as `(width + height) * 2`.
///
/// # Example
/// ```
/// use rect_lib::{BasicRectangle, Rectangle};
///
/// let rect = BasicRectangle::new_from_sides(0, 1, 1, 0);
/// assert_eq!(rect.perimeter(), 4);
/// ```
fn perimeter(&self) -> Self::Unit {
(self.width() + self.height()) * (Self::Unit::one() + Self::Unit::one())
}
/// The area of the rectangle.
/// This is calculated as `width * height`.
///
/// # Example
/// ```
/// use rect_lib::{BasicRectangle, Rectangle};
///
/// let rect = BasicRectangle::new_from_sides(0, 1, 1, 0);
/// assert_eq!(rect.area(), 1);
/// ```
fn area(&self) -> Self::Unit {
// This function is so cute for some reason
self.width() * self.height() // :3
}
/// Checks if the rectangle contains the given point.
///
/// # Example
/// ```
/// use rect_lib::{BasicRectangle, Rectangle};
///
/// let rect = BasicRectangle::new_from_sides(0, 1, 1, 0);
/// assert!(rect.contains_point(0, 1));
/// assert!(!rect.contains_point(0, 2));
/// ```
fn contains_point(&self, x: Self::Unit, y: Self::Unit) -> bool {
x >= self.left() && x <= self.right() && y <= self.top() && y >= self.bottom()
}
/// Checks if one rectangle contains another.
///
/// # Example
/// ```
/// use rect_lib::{BasicRectangle, Rectangle};
///
/// let rect = BasicRectangle::new_from_sides(0, 2, 2, 0);
/// let other = BasicRectangle::new_from_sides(0, 1, 1, 0);
/// assert!(rect.contains_rectangle(&other));
/// assert!(!other.contains_rectangle(&rect));
/// ```
fn contains_rectangle(&self, other: &impl Rectangle<Unit = Self::Unit>) -> bool {
self.left() <= other.left()
&& self.right() >= other.right()
&& self.top() >= other.top()
&& self.bottom() <= other.bottom()
}
/// Checks if one rectangle overlaps with another.
///
/// # Example
/// ```
/// use rect_lib::{BasicRectangle, Rectangle};
///
/// let rect = BasicRectangle::new_from_sides(0, 2, 2, 0);
/// assert!(rect.overlaps(&BasicRectangle::new_from_sides(1, 3, 3, 1)));
/// assert!(!rect.overlaps(&BasicRectangle::new_from_sides(3, 4, 4, 3)));
/// ```
fn overlaps(&self, other: &impl Rectangle<Unit = Self::Unit>) -> bool {
self.left() <= other.right()
&& self.right() >= other.left()
&& self.top() >= other.bottom()
&& self.bottom() <= other.top()
}
/// Returns the intersection of two rectangles.
/// If the rectangles do not intersect, `None` is returned.
///
/// # Example
/// ```
/// use rect_lib::{BasicRectangle, Rectangle};
///
/// let rect = BasicRectangle::new_from_sides(0, 2, 2, 0);
/// let intersection = rect.intersection(&BasicRectangle::new_from_sides(1, 3, 3, 1));
/// assert_eq!(intersection, Some(BasicRectangle::new_from_sides(1, 2, 2, 1)));
///
/// let no_intersection = rect.intersection(&BasicRectangle::new_from_sides(3, 4, 4, 3));
/// assert_eq!(no_intersection, None);
/// ```
fn intersection(&self, other: &impl Rectangle<Unit = Self::Unit>) -> Option<Self> {
let left = self.left().max(other.left());
let right = self.right().min(other.right());
let top = self.top().min(other.top());
let bottom = self.bottom().max(other.bottom());
if left <= right && bottom <= top {
Some(Self::new_from_sides(left, right, top, bottom))
} else {
None
}
}
/// This algorithm identifies all unique unobstructed sub-rectangles within a given rectangle by comparing it against a list of obstructions.
///
/// # Example
/// ```
/// use rect_lib::{BasicRectangle, Rectangle};
///
/// let rect = BasicRectangle::new_from_sides(0, 5, 5, 0);
/// let obstruction = BasicRectangle::new_from_sides(0, 2, 5, 1);
/// let subrects = rect.unobstructed_subrectangles(&vec![&obstruction]);
///
/// assert_eq!(subrects.len(), 2);
/// assert!(subrects.iter().all(|r| [
/// BasicRectangle::new_from_sides(0, 5, 0, 0),
/// BasicRectangle::new_from_sides(3, 5, 5, 0)
/// ].contains(r)));
/// ```
fn unobstructed_subrectangles(
&self,
obstructions: &[&impl Rectangle<Unit = Self::Unit>],
) -> Vec<Self> {
/// A rectangle that has not been obstructed yet
#[derive(Clone)]
struct UnfinishedRect<T: Rectangle> {
left: T::Unit,
top: T::Unit,
bottom: T::Unit,
}
/// A gap between two obstructions
struct Gap<T: Rectangle> {
top: T::Unit,
bottom: T::Unit,
}
/// A line we need to check for gaps
struct Line<T: Rectangle> {
x: T::Unit,
opens: bool,
}
let mut obstructions = obstructions.to_vec();
// sort the obstructions by top position
obstructions.sort_unstable_by(
// descending order
|rect_a, rect_b| {
rect_b.top().cmp(&rect_a.top()) // by the first point on each
},
);
// Section 1: collect all lines that need to be checked for gaps
let mut lines: Vec<Line<Self>> = vec![Line {
x: self.left(),
opens: true,
}];
for rect in &obstructions {
// gaps might close on the left of each obstruction
lines.push(Line {
x: rect.left(),
opens: false,
});
// gaps might open just after the right of each obstruction
lines.push(Line {
x: rect.right() + Self::Unit::one(),
opens: true,
});
}
// order from left to right
lines.sort_unstable_by_key(|line| line.x);
lines.dedup_by_key(|line| line.x);
// filter out lines that are outside the rectangle
let lines = lines
.into_iter()
.filter(|line| self.left() <= line.x && line.x <= self.right());
// this is the list we will return
let mut unique_rectangles: Vec<Self> = Vec::new();
// this will store active rectangles as we sweep from line to line
let mut active_rectangles: Vec<UnfinishedRect<Self>> = Vec::new();
for line in lines {
// Section 2: collect all gaps between obstructions
let mut gaps: Vec<Gap<Self>> = Vec::new();
// think of each obstruction as a shingle on a roof
// if the bottom of one shingle is above the top of the next there is a gap between them
let mut last_rectange_bottom: Self::Unit = self.top();
// filter out obstructions that don't intersect the current line
for obstruction in obstructions
.iter()
.filter(|rect| rect.left() <= line.x && line.x <= rect.right())
{
if last_rectange_bottom > obstruction.top() {
gaps.push(Gap {
top: last_rectange_bottom,
bottom: obstruction.top() + Self::Unit::one(), // the top is inclusive so +1
});
}
// if a later shingle starts in the same place we could get a fake gap
// so we avoid that by getting the lowest point
last_rectange_bottom =
last_rectange_bottom.min(obstruction.bottom() - Self::Unit::one());
}
// check if there is a gap between the bottom of the last shingle and the end of the roof
// the bottom is inclusive so >=
if last_rectange_bottom >= self.bottom() {
gaps.push(Gap {
top: last_rectange_bottom,
bottom: self.bottom(),
});
}
// alright, we have all the gaps
active_rectangles.sort_unstable_by_key(|rect| Reverse(rect.left));
// Section 3: if the current line opens we create new rectangles
if line.opens {
// try to create a new rect for each gap
for gap in gaps {
// make sure its unique
if !active_rectangles
.iter()
.any(|rect| gap.top == rect.top && gap.bottom == rect.bottom)
{
active_rectangles.push(UnfinishedRect {
left: line.x,
top: gap.top,
bottom: gap.bottom,
});
}
}
// on to the next line
continue;
}
// Section 3 & 1/2: if the current line closes we finish rectangles
let mut new_active_rectangles: Vec<UnfinishedRect<Self>> = Vec::new();
active_rectangles = active_rectangles
.iter()
.filter(|rect| {
// if the current rect fits within a gap we can keep it
for gap in gaps.iter() {
if gap.top >= rect.top && rect.bottom >= gap.bottom {
// on to the next active rect
return true;
}
}
// if it is obstructed we can close it
unique_rectangles.push(Self::new_from_sides(
rect.left, // left
line.x - Self::Unit::one(), // right
rect.top, // top
rect.bottom, // bottom
));
// check if there are any gaps within the current rect
for gap in gaps
.iter()
.filter(|gap| gap.top <= rect.top || rect.bottom <= gap.bottom)
{
let top_limit = rect.top.min(gap.top);
let bottom_limit = rect.bottom.max(gap.bottom);
// make sure its unique
if !active_rectangles
.iter()
.chain(new_active_rectangles.iter())
.any(|rect| top_limit == rect.top && bottom_limit == rect.bottom)
{
new_active_rectangles.push(UnfinishedRect {
left: rect.left,
top: top_limit,
bottom: bottom_limit,
});
}
}
// make sure to remove it from active
false
})
.cloned()
.collect();
// add any new sub rectangles
active_rectangles.append(&mut new_active_rectangles);
}
// Section 4: now that we have checked all lines we can close any remaining rectangles
for rect in active_rectangles {
unique_rectangles.push(Self::new_from_sides(
rect.left,
self.right(),
rect.top,
rect.bottom,
));
}
// Quod Erat Demonstrandum
unique_rectangles
}
}