re_types/blueprint/datatypes/
tensor_dimension_index_slider.rs#![allow(unused_imports)]
#![allow(unused_parens)]
#![allow(clippy::clone_on_copy)]
#![allow(clippy::cloned_instead_of_copied)]
#![allow(clippy::map_flatten)]
#![allow(clippy::needless_question_mark)]
#![allow(clippy::new_without_default)]
#![allow(clippy::redundant_closure)]
#![allow(clippy::too_many_arguments)]
#![allow(clippy::too_many_lines)]
use ::re_types_core::external::arrow2;
use ::re_types_core::ComponentName;
use ::re_types_core::SerializationResult;
use ::re_types_core::{ComponentBatch, MaybeOwnedComponentBatch};
use ::re_types_core::{DeserializationError, DeserializationResult};
#[derive(Clone, Debug, Default, Copy, Hash, PartialEq, Eq)]
pub struct TensorDimensionIndexSlider {
pub dimension: u32,
}
impl ::re_types_core::SizeBytes for TensorDimensionIndexSlider {
#[inline]
fn heap_size_bytes(&self) -> u64 {
self.dimension.heap_size_bytes()
}
#[inline]
fn is_pod() -> bool {
<u32>::is_pod()
}
}
impl From<u32> for TensorDimensionIndexSlider {
#[inline]
fn from(dimension: u32) -> Self {
Self { dimension }
}
}
impl From<TensorDimensionIndexSlider> for u32 {
#[inline]
fn from(value: TensorDimensionIndexSlider) -> Self {
value.dimension
}
}
::re_types_core::macros::impl_into_cow!(TensorDimensionIndexSlider);
impl ::re_types_core::Loggable for TensorDimensionIndexSlider {
type Name = ::re_types_core::DatatypeName;
#[inline]
fn name() -> Self::Name {
"rerun.blueprint.datatypes.TensorDimensionIndexSlider".into()
}
#[inline]
fn arrow_datatype() -> arrow2::datatypes::DataType {
#![allow(clippy::wildcard_imports)]
use arrow2::datatypes::*;
DataType::Struct(std::sync::Arc::new(vec![Field::new(
"dimension",
DataType::UInt32,
false,
)]))
}
fn to_arrow_opt<'a>(
data: impl IntoIterator<Item = Option<impl Into<::std::borrow::Cow<'a, Self>>>>,
) -> SerializationResult<Box<dyn arrow2::array::Array>>
where
Self: Clone + 'a,
{
#![allow(clippy::wildcard_imports)]
#![allow(clippy::manual_is_variant_and)]
use ::re_types_core::{Loggable as _, ResultExt as _};
use arrow2::{array::*, datatypes::*};
Ok({
let (somes, data): (Vec<_>, Vec<_>) = data
.into_iter()
.map(|datum| {
let datum: Option<::std::borrow::Cow<'a, Self>> = datum.map(Into::into);
(datum.is_some(), datum)
})
.unzip();
let bitmap: Option<arrow2::bitmap::Bitmap> = {
let any_nones = somes.iter().any(|some| !*some);
any_nones.then(|| somes.into())
};
StructArray::new(
Self::arrow_datatype(),
vec![{
let (somes, dimension): (Vec<_>, Vec<_>) = data
.iter()
.map(|datum| {
let datum = datum.as_ref().map(|datum| datum.dimension.clone());
(datum.is_some(), datum)
})
.unzip();
let dimension_bitmap: Option<arrow2::bitmap::Bitmap> = {
let any_nones = somes.iter().any(|some| !*some);
any_nones.then(|| somes.into())
};
PrimitiveArray::new(
DataType::UInt32,
dimension
.into_iter()
.map(|v| v.unwrap_or_default())
.collect(),
dimension_bitmap,
)
.boxed()
}],
bitmap,
)
.boxed()
})
}
fn from_arrow_opt(
arrow_data: &dyn arrow2::array::Array,
) -> DeserializationResult<Vec<Option<Self>>>
where
Self: Sized,
{
#![allow(clippy::wildcard_imports)]
use ::re_types_core::{Loggable as _, ResultExt as _};
use arrow2::{array::*, buffer::*, datatypes::*};
Ok({
let arrow_data = arrow_data
.as_any()
.downcast_ref::<arrow2::array::StructArray>()
.ok_or_else(|| {
let expected = Self::arrow_datatype();
let actual = arrow_data.data_type().clone();
DeserializationError::datatype_mismatch(expected, actual)
})
.with_context("rerun.blueprint.datatypes.TensorDimensionIndexSlider")?;
if arrow_data.is_empty() {
Vec::new()
} else {
let (arrow_data_fields, arrow_data_arrays) =
(arrow_data.fields(), arrow_data.values());
let arrays_by_name: ::std::collections::HashMap<_, _> = arrow_data_fields
.iter()
.map(|field| field.name.as_str())
.zip(arrow_data_arrays)
.collect();
let dimension = {
if !arrays_by_name.contains_key("dimension") {
return Err(DeserializationError::missing_struct_field(
Self::arrow_datatype(),
"dimension",
))
.with_context("rerun.blueprint.datatypes.TensorDimensionIndexSlider");
}
let arrow_data = &**arrays_by_name["dimension"];
arrow_data
.as_any()
.downcast_ref::<UInt32Array>()
.ok_or_else(|| {
let expected = DataType::UInt32;
let actual = arrow_data.data_type().clone();
DeserializationError::datatype_mismatch(expected, actual)
})
.with_context(
"rerun.blueprint.datatypes.TensorDimensionIndexSlider#dimension",
)?
.into_iter()
.map(|opt| opt.copied())
};
arrow2::bitmap::utils::ZipValidity::new_with_validity(
::itertools::izip!(dimension),
arrow_data.validity(),
)
.map(|opt| {
opt.map(|(dimension)| {
Ok(Self {
dimension: dimension
.ok_or_else(DeserializationError::missing_data)
.with_context(
"rerun.blueprint.datatypes.TensorDimensionIndexSlider#dimension",
)?,
})
})
.transpose()
})
.collect::<DeserializationResult<Vec<_>>>()
.with_context("rerun.blueprint.datatypes.TensorDimensionIndexSlider")?
}
})
}
}