1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
//! This is a utility library providing common types
//! when dealing with RDF data:
//! blank node identifier, literal, subject, predicate, object,
//! graph label, gRDF term, triple and quad.
//!
//! The optional feature `loc` provides compatibility
//! with the `locspan` crate to locate every sub-component
//! of a term.
use iref::{Iri, IriBuf};
use std::cmp::Ordering;
use std::fmt;

/// Type definitions for RDF types with metadata.
#[cfg(feature = "meta")]
use locspan_derive::*;

mod blankid;
mod literal;
mod term;

#[cfg(feature = "meta")]
pub mod meta;

pub use blankid::*;
pub use literal::*;
pub use term::*;

/// RDF triple.
#[derive(Clone, Copy, Eq, Ord, Hash)]
#[cfg_attr(
	feature = "meta",
	derive(
		StrippedPartialEq,
		StrippedEq,
		StrippedPartialOrd,
		StrippedOrd,
		StrippedHash
	)
)]
pub struct Triple<S = Subject, P = IriBuf, O = Object>(pub S, pub P, pub O);

impl<S1: PartialEq<S2>, P1: PartialEq<P2>, O1: PartialEq<O2>, S2, P2, O2>
	PartialEq<Triple<S2, P2, O2>> for Triple<S1, P1, O1>
{
	fn eq(&self, other: &Triple<S2, P2, O2>) -> bool {
		self.0 == other.0 && self.1 == other.1 && self.2 == other.2
	}
}

impl<S1: PartialOrd<S2>, P1: PartialOrd<P2>, O1: PartialOrd<O2>, S2, P2, O2>
	PartialOrd<Triple<S2, P2, O2>> for Triple<S1, P1, O1>
{
	fn partial_cmp(&self, other: &Triple<S2, P2, O2>) -> Option<Ordering> {
		match self.0.partial_cmp(&other.0) {
			Some(Ordering::Equal) => match self.1.partial_cmp(&other.1) {
				Some(Ordering::Equal) => self.2.partial_cmp(&other.2),
				cmp => cmp,
			},
			cmp => cmp,
		}
	}
}

impl Triple {
	pub fn into_grdf(self) -> GrdfTriple {
		Triple(self.0.into_term(), Term::Iri(self.1), self.2)
	}

	pub fn as_grdf(&self) -> GrdfTripleRef {
		Triple(
			self.0.as_term_ref(),
			TermRef::Iri(self.1.as_iri()),
			self.2.as_term_ref(),
		)
	}
}

impl<S, P, O> Triple<S, P, O> {
	/// Creates a new triple.
	pub fn new(subject: S, predicate: P, object: O) -> Self {
		Self(subject, predicate, object)
	}

	/// Returns a reference to the subject of the triple,
	/// the first component.
	pub fn subject(&self) -> &S {
		&self.0
	}

	/// Turns the triple into its subject,
	/// the first component.
	pub fn into_subject(self) -> S {
		self.0
	}

	/// Returns a reference to the predicate of the triple,
	/// the second component.
	pub fn predicate(&self) -> &P {
		&self.1
	}

	/// Turns the triple into its predicate,
	/// the second component.
	pub fn into_predicate(self) -> P {
		self.1
	}

	/// Returns a reference to the object of the triple,
	/// the third component.
	pub fn object(&self) -> &O {
		&self.2
	}

	/// Turns the triple into its object,
	/// the third component.
	pub fn into_object(self) -> O {
		self.2
	}

	/// Turns the triple into a tuple
	pub fn into_parts(self) -> (S, P, O) {
		(self.0, self.1, self.2)
	}
}

impl<S: fmt::Display, P: fmt::Display, O: fmt::Display> fmt::Display for Triple<S, P, O> {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		write!(f, "{} {} {}", self.0, self.1, self.2)
	}
}

/// RDF triple reference.
pub type TripleRef<'a> = Triple<SubjectRef<'a>, Iri<'a>, ObjectRef<'a>>;

/// gRDF triple.
pub type GrdfTriple = Triple<Term, Term, Term>;

/// gRDF triple reference.
pub type GrdfTripleRef<'a> = Triple<TermRef<'a>, TermRef<'a>, TermRef<'a>>;

/// RDF quad.
#[derive(Clone, Copy, Eq, Ord, Hash)]
#[cfg_attr(
	feature = "meta",
	derive(
		StrippedPartialEq,
		StrippedEq,
		StrippedPartialOrd,
		StrippedOrd,
		StrippedHash
	)
)]
pub struct Quad<S = Subject, P = IriBuf, O = Object, G = GraphLabel>(
	pub S,
	pub P,
	pub O,
	pub Option<G>,
);

impl Quad {
	pub fn into_grdf(self) -> GrdfQuad {
		Quad(
			self.0.into_term(),
			Term::Iri(self.1),
			self.2,
			self.3.map(GraphLabel::into_term),
		)
	}

	pub fn as_grdf(&self) -> GrdfQuadRef {
		Quad(
			self.0.as_term_ref(),
			TermRef::Iri(self.1.as_iri()),
			self.2.as_term_ref(),
			self.3.as_ref().map(GraphLabel::as_term_ref),
		)
	}
}

impl<S, P, O, G> Quad<S, P, O, G> {
	/// Creates a new quad.
	pub fn new(subject: S, predicate: P, object: O, graph: Option<G>) -> Self {
		Self(subject, predicate, object, graph)
	}

	/// Returns a reference to the subject of the quad,
	/// the first component.
	pub fn subject(&self) -> &S {
		&self.0
	}

	/// Turns the quad into its subject,
	/// the first component.
	pub fn into_subject(self) -> S {
		self.0
	}

	/// Returns a reference to the predicate of the quad,
	/// the second component.
	pub fn predicate(&self) -> &P {
		&self.1
	}

	/// Turns the quad into its predicate,
	/// the second component.
	pub fn into_predicate(self) -> P {
		self.1
	}

	/// Returns a reference to the object of the quad,
	/// the third component.
	pub fn object(&self) -> &O {
		&self.2
	}

	/// Turns the quad into its object,
	/// the third component.
	pub fn into_object(self) -> O {
		self.2
	}

	/// Returns a reference to the graph of the quad,
	/// the fourth component.
	pub fn graph(&self) -> Option<&G> {
		self.3.as_ref()
	}

	/// Turns the quad into its graph,
	/// the fourth component.
	pub fn into_graph(self) -> Option<G> {
		self.3
	}

	pub fn into_parts(self) -> (S, P, O, Option<G>) {
		(self.0, self.1, self.2, self.3)
	}
}

impl<
		S1: PartialEq<S2>,
		P1: PartialEq<P2>,
		O1: PartialEq<O2>,
		G1: PartialEq<G2>,
		S2,
		P2,
		O2,
		G2,
	> PartialEq<Quad<S2, P2, O2, G2>> for Quad<S1, P1, O1, G1>
{
	fn eq(&self, other: &Quad<S2, P2, O2, G2>) -> bool {
		self.0 == other.0
			&& self.1 == other.1
			&& self.2 == other.2
			&& match (&self.3, &other.3) {
				(Some(a), Some(b)) => a == b,
				(None, None) => true,
				_ => false,
			}
	}
}

impl<
		S1: PartialOrd<S2>,
		P1: PartialOrd<P2>,
		O1: PartialOrd<O2>,
		G1: PartialOrd<G2>,
		S2,
		P2,
		O2,
		G2,
	> PartialOrd<Quad<S2, P2, O2, G2>> for Quad<S1, P1, O1, G1>
{
	fn partial_cmp(&self, other: &Quad<S2, P2, O2, G2>) -> Option<Ordering> {
		match self.0.partial_cmp(&other.0) {
			Some(Ordering::Equal) => match self.1.partial_cmp(&other.1) {
				Some(Ordering::Equal) => match self.2.partial_cmp(&other.2) {
					Some(Ordering::Equal) => match (&self.3, &other.3) {
						(Some(a), Some(b)) => a.partial_cmp(b),
						(Some(_), None) => Some(Ordering::Greater),
						(None, Some(_)) => Some(Ordering::Less),
						(None, None) => Some(Ordering::Equal),
					},
					cmp => cmp,
				},
				cmp => cmp,
			},
			cmp => cmp,
		}
	}
}

impl<S: fmt::Display, P: fmt::Display, O: fmt::Display, G: fmt::Display> fmt::Display
	for Quad<S, P, O, G>
{
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		match self.graph() {
			Some(graph) => write!(f, "{} {} {} {}", self.0, self.1, self.2, graph),
			None => write!(f, "{} {} {}", self.0, self.1, self.2),
		}
	}
}

/// RDF quad reference.
pub type QuadRef<'a> = Quad<SubjectRef<'a>, Iri<'a>, ObjectRef<'a>, GraphLabelRef<'a>>;

/// gRDF quad.
pub type GrdfQuad = Quad<Term, Term, Term, Term>;

/// gRDF quad reference.
pub type GrdfQuadRef<'a> = Quad<TermRef<'a>, TermRef<'a>, TermRef<'a>, TermRef<'a>>;