1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
//! # RC5 Cipher implementation
//!
//! This algorithm is described in this paper:
//! https://www.grc.com/r&d/rc5.pdf
use {
crate::cipher::{encrypt_block, expand_key},
cipher::decrypt_block,
error::Error,
secrecy::{ExposeSecret, SecretVec, Zeroize},
std::mem::size_of,
word::Word,
};
pub mod cipher;
pub mod error;
pub mod word;
/// RC5 Context
///
/// This struct holds the expanded key and the number of rounds that the
/// algorithm will use. Use this struct if you are going to encrypt or
/// decrypt multiple buffers of data with the same key.
///
/// Otherwise you can use the shorthand free standing functions encrypt and
/// decrypt.
pub struct Context<W: Word = u32> {
pub expanded_key: SecretVec<W>,
pub rounds: usize,
}
impl<W: Word> Context<W> {
pub fn new(mut key: Vec<u8>, rounds: usize) -> Result<Self, Error> {
let expanded_key = expand_key::<W>(&key, rounds)?;
key.zeroize();
Ok(Self {
expanded_key: SecretVec::new(expanded_key),
rounds,
})
}
/// Encrypts bytes using the RC5 context and returns the ciphertext.
/// The plaintext must be a multiple of the block size. Padding is not
/// implemented.
pub fn encrypt(&self, plaintext: &[u8]) -> Result<Vec<u8>, Error> {
let word_bytes = size_of::<W>();
let block_size = 2 * word_bytes;
if plaintext.len() % block_size != 0 {
return Err(Error::InvalidInputLength);
}
let mut ciphertext = Vec::with_capacity(plaintext.len());
for block in plaintext.chunks(block_size) {
let block = [
W::from_le_bytes(&block[0..word_bytes])?,
W::from_le_bytes(&block[word_bytes..block_size])?,
];
ciphertext.extend(
encrypt_block::<W>(self.expanded_key.expose_secret(), block)?
.into_iter()
.map(|w| w.to_le_bytes())
.flatten(),
);
}
Ok(ciphertext)
}
pub fn decrypt(&self, ciphertext: &[u8]) -> Result<Vec<u8>, Error> {
let word_bytes = size_of::<W>();
let block_size = 2 * word_bytes;
if ciphertext.len() % block_size != 0 {
return Err(Error::InvalidInputLength);
}
let mut plaintext = Vec::with_capacity(ciphertext.len());
for block in ciphertext.chunks(block_size) {
let block = [
W::from_le_bytes(&block[0..word_bytes])?,
W::from_le_bytes(&block[word_bytes..block_size])?,
];
plaintext.extend(
decrypt_block::<W>(self.expanded_key.expose_secret(), block)?
.into_iter()
.map(|w| w.to_le_bytes())
.flatten(),
);
}
Ok(plaintext)
}
}
/// Given a key and plaintext, returns the ciphertext using a parametrized RC5.
///
/// This is the generic RC5 implementation, which uses a generic word size and
/// rounds count.
///
/// The word size is specified by using a type parameter, which must implement
/// Word trait. The key size is specified by the length of the key slice.
/// The rounds count is specified by the rounds parameter.
///
/// Usage example:
///
/// ```
/// use rc5::encrypt;
/// let key = [
/// 0x2B, 0xD6, 0x45, 0x9F, 0x82, 0xC5, 0xB3, 0x00, 0x95, 0x2C, 0x49, 0x10,
/// 0x48, 0x81, 0xFF, 0x48,
/// ];
///
/// let pt = vec![0xEA, 0x02, 0x47, 0x14, 0xAD, 0x5C, 0x4D, 0x84];
/// let ct = vec![0x11, 0xE4, 0x3B, 0x86, 0xD2, 0x31, 0xEA, 0x64];
/// let res = encrypt::<u32>(&key, &pt, 12).unwrap();
/// assert_eq!(ct, res);
/// ```
pub fn encrypt<W: Word>(
key: &[u8],
plaintext: &[u8],
rounds: usize,
) -> Result<Vec<u8>, Error> {
Context::<W>::new(key.to_vec(), rounds)?.encrypt(plaintext)
}
/// Given a key and ciphertext, returns the plaintext using a parametrized RC5.
///
/// This is the generic RC5 implementation, which uses a generic word size and
/// rounds count.
///
/// The word size is specified by using a type parameter, which must implement
/// Word trait. The key size is specified by the length of the key slice.
/// The rounds count is specified by the rounds parameter.
///
/// Usage example:
///
/// ```
/// use rc5::decrypt;
/// let key = [
/// 0x2B, 0xD6, 0x45, 0x9F, 0x82, 0xC5, 0xB3, 0x00, 0x95, 0x2C, 0x49, 0x10,
/// 0x48, 0x81, 0xFF, 0x48,
/// ];
///
/// let pt = vec![0xEA, 0x02, 0x47, 0x14, 0xAD, 0x5C, 0x4D, 0x84];
/// let ct = vec![0x11, 0xE4, 0x3B, 0x86, 0xD2, 0x31, 0xEA, 0x64];
/// let res = decrypt::<u32>(&key, &ct, 12).unwrap();
/// assert_eq!(pt, res);
/// ```
pub fn decrypt<W: Word>(
key: &[u8],
ciphertext: &[u8],
rounds: usize,
) -> Result<Vec<u8>, Error> {
Context::<W>::new(key.to_vec(), rounds)?.decrypt(ciphertext)
}
/// Given a key and plaintext, return the ciphertext using RC5/32/12/16.
///
/// This is the default RC5 implementation, which uses 32-bit words and 12
/// rounds and a key size of 16 bytes.
///
/// Usage example:
///
/// ```
/// use rc5::encrypt_default;
/// let key = [
/// 0x2B, 0xD6, 0x45, 0x9F, 0x82, 0xC5, 0xB3, 0x00, 0x95, 0x2C, 0x49, 0x10,
/// 0x48, 0x81, 0xFF, 0x48,
/// ];
///
/// let pt = vec![0xEA, 0x02, 0x47, 0x14, 0xAD, 0x5C, 0x4D, 0x84];
/// let ct = vec![0x11, 0xE4, 0x3B, 0x86, 0xD2, 0x31, 0xEA, 0x64];
/// let res = encrypt_default(key, &pt).unwrap();
/// assert_eq!(ct, res);
/// ```
pub fn encrypt_default(
key: [u8; 16],
plaintext: &[u8],
) -> Result<Vec<u8>, Error> {
encrypt::<u32>(&key, plaintext, 12)
}
/// Given a key and ciphertext, return the plaintext using RC5/32/12/16
///
/// Usage example:
///
/// ```
/// use rc5::decrypt_default;
/// let key = [
/// 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
/// 0x0C, 0x0D, 0x0E, 0x0F,
/// ];
///
/// let pt = vec![0x96, 0x95, 0x0D, 0xDA, 0x65, 0x4A, 0x3D, 0x62];
/// let ct = vec![0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77];
/// let res = decrypt_default(key, &ct).unwrap();
/// assert_eq!(pt, res);
/// ```
pub fn decrypt_default(
key: [u8; 16],
ciphertext: &[u8],
) -> Result<Vec<u8>, Error> {
decrypt::<u32>(&key, ciphertext, 12)
}