1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
#![allow(rustdoc::broken_intra_doc_links)]
#![allow(non_upper_case_globals)]
#![allow(non_snake_case)]
//! Implementation of Ruby macros.
//!
//! Since macros are rely on the C preprocessor, or defined as `inline` C
//! functions, they are not available when linking libruby. In order to use the
//! libruby macros from Rust, `rb-sys` implements them using the following
//! strategies:
//!
//! 1. Some macros are implemented in Rust, as inline functions. Using these
//! does not require compiling C code, and can be used in Rust code without the
//! `ruby-macros` feature.
//! 2. The rest are implemented in C code that exports the macros as functions
//! that can be used in Rust. This requires the `ruby-macros` feature.
#[cfg(ruby_gte_3_0)]
use crate::ruby_rarray_consts::RARRAY_EMBED_LEN_SHIFT;
#[cfg(all(ruby_lt_3_0, ruby_gt_2_4))]
use crate::ruby_rarray_flags::RARRAY_EMBED_LEN_SHIFT;
#[cfg(ruby_gt_2_4)]
use crate::ruby_rarray_flags::{RARRAY_EMBED_FLAG, RARRAY_EMBED_LEN_MASK};
#[cfg(ruby_lte_2_4)]
mod ruby_lte_2_4 {
pub const RARRAY_EMBED_FLAG: u32 = 1 << 13;
pub const RARRAY_EMBED_LEN_SHIFT: u32 = 15;
pub const RARRAY_EMBED_LEN_MASK: u32 = RUBY_FL_USER3 | RUBY_FL_USER4;
pub const RUBY_FL_USHIFT: u32 = 12;
pub const RUBY_FL_USER3: u32 = 1 << (RUBY_FL_USHIFT as u32 + 3);
pub const RUBY_FL_USER4: u32 = 1 << (RUBY_FL_USHIFT as u32 + 4);
}
#[cfg(ruby_lte_2_4)]
use ruby_lte_2_4::*;
use crate::{
value_type, Qnil, FIXNUM_FLAG, FLONUM_FLAG, FLONUM_MASK, IMMEDIATE_MASK, RB_TYPE_P,
SYMBOL_FLAG, VALUE,
};
/// Emulates Ruby's "if" statement.
///
/// @param[in] obj An arbitrary ruby object.
/// @retval false `obj` is either ::RUBY_Qfalse or ::RUBY_Qnil.
/// @retval true Anything else.
///
/// ```
/// use rb_sys::special_consts::*;
///
/// assert!(!TEST(Qfalse));
/// assert!(!TEST(Qnil));
/// assert!(TEST(Qtrue));
/// ```
#[inline(always)]
pub fn TEST<T: Into<VALUE>>(obj: T) -> bool {
(obj.into() & !(Qnil as VALUE)) != 0
}
/// Checks if the given object is nil.
///
/// @param[in] obj An arbitrary ruby object.
/// @retval true `obj` is ::RUBY_Qnil.
/// @retval false Anything else.
///
/// ### Example
///
/// ```
/// use rb_sys::special_consts::*;
///
/// assert!(NIL_P(Qnil));
/// assert!(!NIL_P(Qtrue));
/// ```
#[inline(always)]
pub fn NIL_P<T: Into<VALUE>>(obj: T) -> bool {
obj.into() == (Qnil as VALUE)
}
/// Checks if the given object is a so-called Fixnum.
///
/// @param[in] obj An arbitrary ruby object.
/// @retval true `obj` is a Fixnum.
/// @retval false Anything else.
/// @note Fixnum was a thing in the 20th century, but it is rather an
/// implementation detail today.
#[inline(always)]
pub fn FIXNUM_P<T: Into<VALUE>>(obj: T) -> bool {
(obj.into() & FIXNUM_FLAG as VALUE) != 0
}
/// Checks if the given object is a static symbol.
///
/// @param[in] obj An arbitrary ruby object.
/// @retval true `obj` is a static symbol
/// @retval false Anything else.
/// @see RB_DYNAMIC_SYM_P()
/// @see RB_SYMBOL_P()
/// @note These days there are static and dynamic symbols, just like we
/// once had Fixnum/Bignum back in the old days.
pub fn STATIC_SYM_P<T: Into<VALUE>>(obj: T) -> bool {
(obj.into() & 0xff) == SYMBOL_FLAG as VALUE
}
/// Get the backend storage of a Ruby array.
///
/// ### Safety
///
/// This function is unsafe because it dereferences a raw pointer and returns
/// raw pointers to Ruby memory. The caller must ensure that the pointer stays live
/// for the duration of usage the the underlying array (by either GC marking or
/// keeping the RArray on the stack).
///
/// @param[in] a An object of ::RArray.
/// @return Its backend storage.
#[inline(always)]
pub unsafe fn RARRAY_CONST_PTR<T: Into<VALUE>>(obj: T) -> *const VALUE {
let value: VALUE = obj.into();
assert!(RB_TYPE_P(value) == value_type::RUBY_T_ARRAY);
let rbasic = &*(value as *const crate::RBasic);
let rarray = &*(value as *const crate::RArray);
if (rbasic.flags & RARRAY_EMBED_FLAG as VALUE) != 0 {
rarray.as_.ary.as_ptr()
} else {
rarray.as_.heap.ptr
}
}
/// Get the length of a Ruby array.
///
/// ### Safety
///
/// This function is unsafe because it dereferences a raw pointer in order to
/// access internal Ruby memory.
///
/// @param[in] a An object of ::RArray.
/// @return Its length.
#[inline(always)]
pub unsafe fn RARRAY_LEN<T: Into<VALUE>>(obj: T) -> isize {
let value: VALUE = obj.into();
assert!(RB_TYPE_P(value) == value_type::RUBY_T_ARRAY);
let rbasic = &*(value as *const crate::RBasic);
let rarray = &*(value as *const crate::RArray);
if (rbasic.flags & RARRAY_EMBED_FLAG as VALUE) != 0 {
let len = (rbasic.flags >> RARRAY_EMBED_LEN_SHIFT as VALUE)
& (RARRAY_EMBED_LEN_MASK as VALUE >> RARRAY_EMBED_LEN_SHIFT as VALUE);
len as _
} else {
rarray.as_.heap.len as _
}
}
/// Checks if the given object is a so-called Flonum.
///
/// @param[in] obj An arbitrary ruby object.
/// @retval true `obj` is a Flonum.
/// @retval false Anything else.
/// @see RB_FLOAT_TYPE_P()
/// @note These days there are Flonums and non-Flonum floats, just like we
/// once had Fixnum/Bignum back in the old days.
#[inline(always)]
pub fn FLONUM_P<T: Into<VALUE>>(obj: T) -> bool {
#[cfg(ruby_use_flonum = "true")]
let ret = {
let obj = obj.into();
(obj & (FLONUM_MASK as VALUE)) == FLONUM_FLAG as VALUE
};
#[cfg(not(ruby_use_flonum = "true"))]
let ret = false;
ret
}
/// Checks if the given object is an immediate i.e. an object which has no
/// corresponding storage inside of the object space.
///
/// @param[in] obj An arbitrary ruby object.
/// @retval true `obj` is a Flonum.
/// @retval false Anything else.
/// @see RB_FLOAT_TYPE_P()
/// @note The concept of "immediate" is purely C specific.
#[inline(always)]
pub fn IMMEDIATE_P<T: Into<VALUE>>(obj: T) -> bool {
obj.into() & (IMMEDIATE_MASK as VALUE) != 0
}
/// Checks if the given object is of enum ::ruby_special_consts.
///
/// @param[in] obj An arbitrary ruby object.
/// @retval true `obj` is a special constant.
/// @retval false Anything else.
///
/// ### Example
///
/// ```
/// use rb_sys::special_consts::*;
///
/// assert!(SPECIAL_CONST_P(Qnil));
/// assert!(SPECIAL_CONST_P(Qtrue));
/// assert!(SPECIAL_CONST_P(Qfalse));
/// ```
#[inline(always)]
pub fn SPECIAL_CONST_P<T: Into<VALUE>>(obj: T) -> bool {
let value: VALUE = obj.into();
let is_immediate = value & (IMMEDIATE_MASK as VALUE) != 0;
let test = (value & !(Qnil as VALUE)) != 0;
is_immediate || !test
}
#[cfg(feature = "ruby-macros")]
use crate::ID;
#[cfg(feature = "ruby-macros")]
use std::os::raw::{c_char, c_long};
#[cfg(feature = "ruby-macros")]
extern "C" {
/// Allocates an instance of ::rb_cSymbol that has the given id.
///
/// @param[in] id An id.
/// @retval Qfalse No such id ever existed in the history.
/// @retval Otherwise An allocated ::rb_cSymbol instance.
#[link_name = "ruby_macros_ID2SYM"]
pub fn ID2SYM(obj: ID) -> VALUE;
/// Converts an instance of ::rb_cSymbol into an ::ID.
///
/// @param[in] obj An instance of ::rb_cSymbol.
/// @exception rb_eTypeError `obj` is not an instance of ::rb_cSymbol.
/// @return An ::ID of the identical symbol.
#[link_name = "ruby_macros_SYM2ID"]
pub fn SYM2ID(obj: ID) -> VALUE;
/// Queries the contents pointer of the string.
///
/// @param[in] str String in question.
/// @return Pointer to its contents.
/// @pre `str` must be an instance of ::RString.
#[link_name = "ruby_macros_RSTRING_PTR"]
pub fn RSTRING_PTR(obj: VALUE) -> *mut c_char;
/// Queries the length of the string.
///
/// @param[in] str String in question.
/// @return Its length, in bytes.
/// @pre `str` must be an instance of ::RString.
#[link_name = "ruby_macros_RSTRING_LEN"]
pub fn RSTRING_LEN(obj: VALUE) -> c_long;
/// Wild use of a C pointer. This function accesses the backend storage
/// directly. This is slower than #RARRAY_PTR_USE_TRANSIENT. It exercises
/// extra manoeuvres to protect our generational GC. Use of this function is
/// considered archaic. Use a modern way instead.
/// @param[in] ary An object of ::RArray.
/// @return The backend C array.
/// @internal
/// That said... there are extension libraries in the wild who uses it. We
/// cannot but continue supporting.
#[link_name = "ruby_macros_RARRAY_PTR"]
pub fn RARRAY_PTR(a: VALUE) -> *const VALUE;
}