rb_sys/
macros.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
//! Implementation of Ruby macros.
//!
//! Since macros are rely on the C preprocessor, or defined as `inline` C
//! functions, they are not available when linking libruby. In order to use the
//! libruby macros from Rust, `rb-sys` implements them using the following
//! strategies:
//!
//! 1. For stable versions of Ruby, the macros are implemented as Rust functions
//! 2. For ruby-head, the macros are implemented as C functions that are linked
//!    into the crate.

#![allow(rustdoc::broken_intra_doc_links)]
#![allow(non_upper_case_globals)]
#![allow(non_snake_case)]

use crate::ruby_value_type;
use crate::stable_api::get_default as api;
use crate::StableApiDefinition;
use crate::VALUE;
use std::os::raw::{c_char, c_long};

/// Emulates Ruby's "if" statement.
///
/// - @param[in]  obj    An arbitrary ruby object.
/// - @retval     false  `obj` is either ::RUBY_Qfalse or ::RUBY_Qnil.
/// - @retval     true   Anything else.
///
/// ```
/// use rb_sys::special_consts::*;
///
/// assert!(!TEST(Qfalse));
/// assert!(!TEST(Qnil));
/// assert!(TEST(Qtrue));
/// ```
#[inline]
pub fn TEST<T: Into<VALUE>>(obj: T) -> bool {
    api().rb_test(obj.into())
}

/// Checks if the given object is nil.
///
/// - @param[in]  obj    An arbitrary ruby object.
/// - @retval     true   `obj` is ::RUBY_Qnil.
/// - @retval     false  Anything else.
///
/// ### Example
///
/// ```
/// use rb_sys::special_consts::*;
///
/// assert!(NIL_P(Qnil));
/// assert!(!NIL_P(Qtrue));
/// ```
#[inline]
pub fn NIL_P<T: Into<VALUE>>(obj: T) -> bool {
    api().nil_p(obj.into())
}

/// Checks if the given object is a so-called Fixnum.
///
/// - @param[in]  obj    An arbitrary ruby object.
/// - @retval     true   `obj` is a Fixnum.
/// - @retval     false  Anything else.
/// - @note       Fixnum was  a thing  in the  20th century, but  it is  rather an
///             implementation detail today.
#[inline]
pub fn FIXNUM_P<T: Into<VALUE>>(obj: T) -> bool {
    api().fixnum_p(obj.into())
}

/// Checks if the given object is a static symbol.
///
/// - @param[in]  obj    An arbitrary ruby object.
/// - @retval     true   `obj` is a static symbol
/// - @retval     false  Anything else.
/// - @see        RB_DYNAMIC_SYM_P()
/// - @see        RB_SYMBOL_P()
/// - @note       These days  there are static  and dynamic symbols, just  like we
///             once had Fixnum/Bignum back in the old days.
#[inline]
pub fn STATIC_SYM_P<T: Into<VALUE>>(obj: T) -> bool {
    api().static_sym_p(obj.into())
}

/// Get the backend storage of a Ruby array.
///
/// ### Safety
///
/// This function is unsafe because it dereferences a raw pointer and returns
/// raw pointers to Ruby memory. The caller must ensure that the pointer stays live
/// for the duration of usage the the underlying array (by either GC marking or
/// keeping the RArray on the stack).
///
/// - @param[in]  a  An object of ::RArray.
/// - @return     Its backend storage.
#[inline]
pub unsafe fn RARRAY_CONST_PTR<T: Into<VALUE>>(obj: T) -> *const VALUE {
    api().rarray_const_ptr(obj.into())
}

/// Get the length of a Ruby array.
///
/// ### Safety
///
/// This function is unsafe because it dereferences a raw pointer in order to
/// access internal Ruby memory.
///
/// - @param[in]  a  An object of ::RArray.
/// - @return     Its length.
#[inline]
pub unsafe fn RARRAY_LEN<T: Into<VALUE>>(obj: T) -> c_long {
    api().rarray_len(obj.into())
}

/// Get the length of a Ruby string.
///
/// ### Safety
///
/// This function is unsafe because it dereferences a raw pointer in order to
/// access internal Ruby memory.
///
/// - @param[in]  a  An object of ::RString.
/// - @return     Its length.
#[inline]
pub unsafe fn RSTRING_LEN<T: Into<VALUE>>(obj: T) -> c_long {
    api().rstring_len(obj.into())
}

/// Get the backend storage of a Ruby string.
///
/// ### Safety
///
/// This function is unsafe because it dereferences a raw pointer and returns
/// raw pointers to Ruby memory.
///
/// - @param[in]  a  An object of ::RString.
/// - @return     Its backend storage
#[inline]
pub unsafe fn RSTRING_PTR<T: Into<VALUE>>(obj: T) -> *const c_char {
    api().rstring_ptr(obj.into())
}

/// Checks if the given object is a so-called Flonum.
///
/// @param[in]  obj    An arbitrary ruby object.
/// @retval     true   `obj` is a Flonum.
/// @retval     false  Anything else.
/// @see        RB_FLOAT_TYPE_P()
/// @note       These days there are Flonums and non-Flonum floats, just like we
///             once had Fixnum/Bignum back in the old days.
#[inline]
pub fn FLONUM_P<T: Into<VALUE>>(#[allow(unused)] obj: T) -> bool {
    api().flonum_p(obj.into())
}

/// Checks if  the given  object is  an immediate  i.e. an  object which  has no
/// corresponding storage inside of the object space.
///
/// @param[in]  obj    An arbitrary ruby object.
/// @retval     true   `obj` is a Flonum.
/// @retval     false  Anything else.
/// @see        RB_FLOAT_TYPE_P()
/// @note       The concept of "immediate" is purely C specific.
#[inline]
pub fn IMMEDIATE_P<T: Into<VALUE>>(obj: T) -> bool {
    api().immediate_p(obj.into())
}

/// Checks if the given object is of enum ::ruby_special_consts.
///
/// @param[in]  obj    An arbitrary ruby object.
/// @retval     true   `obj` is a special constant.
/// @retval     false  Anything else.
///
/// ### Example
///
/// ```
/// use rb_sys::special_consts::*;
///
/// assert!(SPECIAL_CONST_P(Qnil));
/// assert!(SPECIAL_CONST_P(Qtrue));
/// assert!(SPECIAL_CONST_P(Qfalse));
/// ```
#[inline]
pub fn SPECIAL_CONST_P<T: Into<VALUE>>(obj: T) -> bool {
    api().special_const_p(obj.into())
}

/// Queries the type of the object.
///
/// @param[in]  obj  Object in question.
/// @pre        `obj` must not be a special constant.
/// @return     The type of `obj`.
///
/// # Safety
/// This function is unsafe because it could dereference a raw pointer when
/// attemping to access the underlying [`RBasic`] struct.
#[inline]
pub unsafe fn RB_BUILTIN_TYPE(obj: VALUE) -> ruby_value_type {
    api().builtin_type(obj)
}

/// Queries if the object is an instance of ::rb_cInteger.
///
/// @param[in]  obj    Object in question.
/// @retval     true   It is.
/// @retval     false  It isn't.
///
/// # Safety
/// This function is unsafe because it could dereference a raw pointer when
/// attemping to access the underlying [`RBasic`] struct.
#[inline]
pub unsafe fn RB_INTEGER_TYPE_P(obj: VALUE) -> bool {
    api().integer_type_p(obj)
}

/// Queries if the object is a dynamic symbol.
///
/// @param[in]  obj    Object in question.
/// @retval     true   It is.
/// @retval     false  It isn't.
///
/// # Safety
/// This function is unsafe because it could dereference a raw pointer when
/// attemping to access the underlying [`RBasic`] struct.
#[inline]
pub unsafe fn RB_DYNAMIC_SYM_P(obj: VALUE) -> bool {
    api().dynamic_sym_p(obj)
}

/// Queries if the object is an instance of ::rb_cSymbol.
///
/// @param[in]  obj    Object in question.
/// @retval     true   It is.
/// @retval     false  It isn't.
///
/// # Safety
/// This function is unsafe because it could dereference a raw pointer when
/// attemping to access the underlying [`RBasic`] struct.
#[inline]
pub unsafe fn RB_SYMBOL_P(obj: VALUE) -> bool {
    api().symbol_p(obj)
}

/// Identical to RB_BUILTIN_TYPE(), except it can also accept special constants.
///
/// @param[in]  obj  Object in question.
/// @return     The type of `obj`.
///
/// # Safety
/// This function is unsafe because it could dereference a raw pointer when
/// attemping to access the underlying [`RBasic`] struct.
#[inline]
pub unsafe fn RB_TYPE(value: VALUE) -> ruby_value_type {
    api().rb_type(value)
}

/// Queries if the given object is of given type.
///
/// @param[in]  obj    An object.
/// @param[in]  t      A type.
/// @retval     true   `obj` is of type `t`.
/// @retval     false  Otherwise.
///
/// # Safety
/// This function is unsafe because it could dereference a raw pointer when
/// attemping to access the underlying [`RBasic`] struct.
#[inline]
#[cfg(ruby_engine = "mri")] // truffleruby provides its own implementation
pub unsafe fn RB_TYPE_P(obj: VALUE, ty: ruby_value_type) -> bool {
    api().type_p(obj, ty)
}

/// Queries if the object is an instance of ::rb_cFloat.
///
/// @param[in]  obj    Object in question.
/// @retval     true   It is.
/// @retval     false  It isn't.
///
/// # Safety
/// This function is unsafe because it could dereference a raw pointer when
/// attemping to access the underlying [`RBasic`] struct.
#[inline]
pub unsafe fn RB_FLOAT_TYPE_P(obj: VALUE) -> bool {
    api().float_type_p(obj)
}