rb_sys/macros.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
//! Implementation of Ruby macros.
//!
//! Since macros are rely on the C preprocessor, or defined as `inline` C
//! functions, they are not available when linking libruby. In order to use the
//! libruby macros from Rust, `rb-sys` implements them using the following
//! strategies:
//!
//! 1. For stable versions of Ruby, the macros are implemented as Rust functions
//! 2. For ruby-head, the macros are implemented as C functions that are linked
//! into the crate.
#![allow(rustdoc::broken_intra_doc_links)]
#![allow(non_upper_case_globals)]
#![allow(non_snake_case)]
use crate::ruby_value_type;
use crate::stable_api::get_default as api;
use crate::StableApiDefinition;
use crate::VALUE;
use std::os::raw::{c_char, c_long};
/// Emulates Ruby's "if" statement.
///
/// - @param[in] obj An arbitrary ruby object.
/// - @retval false `obj` is either ::RUBY_Qfalse or ::RUBY_Qnil.
/// - @retval true Anything else.
///
/// ```
/// use rb_sys::special_consts::*;
///
/// assert!(!TEST(Qfalse));
/// assert!(!TEST(Qnil));
/// assert!(TEST(Qtrue));
/// ```
#[inline]
pub fn TEST<T: Into<VALUE>>(obj: T) -> bool {
api().rb_test(obj.into())
}
/// Checks if the given object is nil.
///
/// - @param[in] obj An arbitrary ruby object.
/// - @retval true `obj` is ::RUBY_Qnil.
/// - @retval false Anything else.
///
/// ### Example
///
/// ```
/// use rb_sys::special_consts::*;
///
/// assert!(NIL_P(Qnil));
/// assert!(!NIL_P(Qtrue));
/// ```
#[inline]
pub fn NIL_P<T: Into<VALUE>>(obj: T) -> bool {
api().nil_p(obj.into())
}
/// Checks if the given object is a so-called Fixnum.
///
/// - @param[in] obj An arbitrary ruby object.
/// - @retval true `obj` is a Fixnum.
/// - @retval false Anything else.
/// - @note Fixnum was a thing in the 20th century, but it is rather an
/// implementation detail today.
#[inline]
pub fn FIXNUM_P<T: Into<VALUE>>(obj: T) -> bool {
api().fixnum_p(obj.into())
}
/// Checks if the given object is a static symbol.
///
/// - @param[in] obj An arbitrary ruby object.
/// - @retval true `obj` is a static symbol
/// - @retval false Anything else.
/// - @see RB_DYNAMIC_SYM_P()
/// - @see RB_SYMBOL_P()
/// - @note These days there are static and dynamic symbols, just like we
/// once had Fixnum/Bignum back in the old days.
#[inline]
pub fn STATIC_SYM_P<T: Into<VALUE>>(obj: T) -> bool {
api().static_sym_p(obj.into())
}
/// Get the backend storage of a Ruby array.
///
/// ### Safety
///
/// This function is unsafe because it dereferences a raw pointer and returns
/// raw pointers to Ruby memory. The caller must ensure that the pointer stays live
/// for the duration of usage the the underlying array (by either GC marking or
/// keeping the RArray on the stack).
///
/// - @param[in] a An object of ::RArray.
/// - @return Its backend storage.
#[inline]
pub unsafe fn RARRAY_CONST_PTR<T: Into<VALUE>>(obj: T) -> *const VALUE {
api().rarray_const_ptr(obj.into())
}
/// Get the length of a Ruby array.
///
/// ### Safety
///
/// This function is unsafe because it dereferences a raw pointer in order to
/// access internal Ruby memory.
///
/// - @param[in] a An object of ::RArray.
/// - @return Its length.
#[inline]
pub unsafe fn RARRAY_LEN<T: Into<VALUE>>(obj: T) -> c_long {
api().rarray_len(obj.into())
}
/// Get the length of a Ruby string.
///
/// ### Safety
///
/// This function is unsafe because it dereferences a raw pointer in order to
/// access internal Ruby memory.
///
/// - @param[in] a An object of ::RString.
/// - @return Its length.
#[inline]
pub unsafe fn RSTRING_LEN<T: Into<VALUE>>(obj: T) -> c_long {
api().rstring_len(obj.into())
}
/// Get the backend storage of a Ruby string.
///
/// ### Safety
///
/// This function is unsafe because it dereferences a raw pointer and returns
/// raw pointers to Ruby memory.
///
/// - @param[in] a An object of ::RString.
/// - @return Its backend storage
#[inline]
pub unsafe fn RSTRING_PTR<T: Into<VALUE>>(obj: T) -> *const c_char {
api().rstring_ptr(obj.into())
}
/// Checks if the given object is a so-called Flonum.
///
/// @param[in] obj An arbitrary ruby object.
/// @retval true `obj` is a Flonum.
/// @retval false Anything else.
/// @see RB_FLOAT_TYPE_P()
/// @note These days there are Flonums and non-Flonum floats, just like we
/// once had Fixnum/Bignum back in the old days.
#[inline]
pub fn FLONUM_P<T: Into<VALUE>>(#[allow(unused)] obj: T) -> bool {
api().flonum_p(obj.into())
}
/// Checks if the given object is an immediate i.e. an object which has no
/// corresponding storage inside of the object space.
///
/// @param[in] obj An arbitrary ruby object.
/// @retval true `obj` is a Flonum.
/// @retval false Anything else.
/// @see RB_FLOAT_TYPE_P()
/// @note The concept of "immediate" is purely C specific.
#[inline]
pub fn IMMEDIATE_P<T: Into<VALUE>>(obj: T) -> bool {
api().immediate_p(obj.into())
}
/// Checks if the given object is of enum ::ruby_special_consts.
///
/// @param[in] obj An arbitrary ruby object.
/// @retval true `obj` is a special constant.
/// @retval false Anything else.
///
/// ### Example
///
/// ```
/// use rb_sys::special_consts::*;
///
/// assert!(SPECIAL_CONST_P(Qnil));
/// assert!(SPECIAL_CONST_P(Qtrue));
/// assert!(SPECIAL_CONST_P(Qfalse));
/// ```
#[inline]
pub fn SPECIAL_CONST_P<T: Into<VALUE>>(obj: T) -> bool {
api().special_const_p(obj.into())
}
/// Queries the type of the object.
///
/// @param[in] obj Object in question.
/// @pre `obj` must not be a special constant.
/// @return The type of `obj`.
///
/// # Safety
/// This function is unsafe because it could dereference a raw pointer when
/// attemping to access the underlying [`RBasic`] struct.
#[inline]
pub unsafe fn RB_BUILTIN_TYPE(obj: VALUE) -> ruby_value_type {
api().builtin_type(obj)
}
/// Queries if the object is an instance of ::rb_cInteger.
///
/// @param[in] obj Object in question.
/// @retval true It is.
/// @retval false It isn't.
///
/// # Safety
/// This function is unsafe because it could dereference a raw pointer when
/// attemping to access the underlying [`RBasic`] struct.
#[inline]
pub unsafe fn RB_INTEGER_TYPE_P(obj: VALUE) -> bool {
api().integer_type_p(obj)
}
/// Queries if the object is a dynamic symbol.
///
/// @param[in] obj Object in question.
/// @retval true It is.
/// @retval false It isn't.
///
/// # Safety
/// This function is unsafe because it could dereference a raw pointer when
/// attemping to access the underlying [`RBasic`] struct.
#[inline]
pub unsafe fn RB_DYNAMIC_SYM_P(obj: VALUE) -> bool {
api().dynamic_sym_p(obj)
}
/// Queries if the object is an instance of ::rb_cSymbol.
///
/// @param[in] obj Object in question.
/// @retval true It is.
/// @retval false It isn't.
///
/// # Safety
/// This function is unsafe because it could dereference a raw pointer when
/// attemping to access the underlying [`RBasic`] struct.
#[inline]
pub unsafe fn RB_SYMBOL_P(obj: VALUE) -> bool {
api().symbol_p(obj)
}
/// Identical to RB_BUILTIN_TYPE(), except it can also accept special constants.
///
/// @param[in] obj Object in question.
/// @return The type of `obj`.
///
/// # Safety
/// This function is unsafe because it could dereference a raw pointer when
/// attemping to access the underlying [`RBasic`] struct.
#[inline]
pub unsafe fn RB_TYPE(value: VALUE) -> ruby_value_type {
api().rb_type(value)
}
/// Queries if the given object is of given type.
///
/// @param[in] obj An object.
/// @param[in] t A type.
/// @retval true `obj` is of type `t`.
/// @retval false Otherwise.
///
/// # Safety
/// This function is unsafe because it could dereference a raw pointer when
/// attemping to access the underlying [`RBasic`] struct.
#[inline]
#[cfg(ruby_engine = "mri")] // truffleruby provides its own implementation
pub unsafe fn RB_TYPE_P(obj: VALUE, ty: ruby_value_type) -> bool {
api().type_p(obj, ty)
}
/// Queries if the object is an instance of ::rb_cFloat.
///
/// @param[in] obj Object in question.
/// @retval true It is.
/// @retval false It isn't.
///
/// # Safety
/// This function is unsafe because it could dereference a raw pointer when
/// attemping to access the underlying [`RBasic`] struct.
#[inline]
pub unsafe fn RB_FLOAT_TYPE_P(obj: VALUE) -> bool {
api().float_type_p(obj)
}