1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
// Copyright 2018 Ivan Porto Carrero
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copied here due to lazy_static version collision.
extern crate rand;

use rand::thread_rng;
use rand::rngs::{OsRng};
use rand::distributions::Alphanumeric;
use rand::Rng;
use std::sync::Mutex;

const BASE: usize = 62;
const ALPHABET: [u8; BASE as usize] = [b'0', b'1', b'2', b'3', b'4', b'5', b'6', b'7', b'8', b'9',
                                       b'A', b'B', b'C', b'D', b'E', b'F', b'G', b'H', b'I', b'J',
                                       b'K', b'L', b'M', b'N', b'O', b'P', b'Q', b'R', b'S', b'T',
                                       b'U', b'V', b'W', b'X', b'Y', b'Z', b'a', b'b', b'c', b'd',
                                       b'e', b'f', b'g', b'h', b'i', b'j', b'k', b'l', b'm', b'n',
                                       b'o', b'p', b'q', b'r', b's', b't', b'u', b'v', b'w', b'x',
                                       b'y', b'z'];

const PRE_LEN: usize = 12;
const MAX_SEQ: u64 = 839_299_365_868_340_224; // (BASE ^ remaining bytes 22 - 12) == 62^10
const MIN_INC: u64 = 33;
const MAX_INC: u64 = 333;
const TOTAL_LEN: usize = 22;

lazy_static! {
    static ref GLOBAL_NUID: Mutex<NUID> = Mutex::new(NUID::new());
}

/// Generate the next `NUID` string from the global locked `NUID` instance.
pub fn next() -> String {
    GLOBAL_NUID.lock().unwrap().next()
}

/// NUID needs to be very fast to generate and truly unique, all while being entropy pool friendly.
/// We will use 12 bytes of crypto generated data (entropy draining), and 10 bytes of sequential data
/// that is started at a pseudo random number and increments with a pseudo-random increment.
/// Total is 22 bytes of base 62 ascii text :)
pub struct NUID {
    pre: [u8; PRE_LEN],
    seq: u64,
    inc: u64,
}

impl Default for NUID {

   fn default() -> Self {
        let mut rng = thread_rng();
        let seq = Rng::gen_range::<u64, u64, _>(&mut rng, 0, MAX_SEQ);
        let inc = MIN_INC + Rng::gen_range::<u64, u64, _>(&mut rng, 0, MAX_INC+MIN_INC);
        let mut n = NUID {
            pre: [0; PRE_LEN], seq, inc,
        };
        n.randomize_prefix();
        n
    }
}


impl NUID {
    /// generate a new `NUID` and properly initialize the prefix, sequential start, and sequential increment.
    pub fn new() -> Self {
        Self::default()
    }

    pub fn randomize_prefix(&mut self) {
        let mut rng = OsRng::new().expect("failed to get crypto random number generator");
        for (i, n) in rng.sample_iter(&Alphanumeric).take(PRE_LEN).enumerate() {
            self.pre[i] = ALPHABET[n as usize % BASE];
        }
    }

    /// Generate the next `NUID` string.
    #[allow(clippy::should_implement_trait)]
    pub fn next(&mut self) -> String {
        self.seq += self.inc;
        if self.seq >= MAX_SEQ {
            self.randomize_prefix();
            self.reset_sequential();
        }
        let seq: usize = self.seq as usize;

        let mut b: [u8; TOTAL_LEN] = [0; TOTAL_LEN];
        for (i, n) in self.pre.iter().enumerate() {
            b[i] = *n;
        }

        let mut l = seq;
        for i in (PRE_LEN..TOTAL_LEN).rev() {
            b[i] = ALPHABET[l%BASE];
            l /= BASE;
        }

        // data is base62 encoded so this can't fail
        String::from_utf8(b.to_vec()).unwrap()
    }

    fn reset_sequential(&mut self) {
        let mut rng = thread_rng();
        self.seq = Rng::gen_range::<u64, _, _>(&mut rng, 0, MAX_SEQ);
        self.inc = MIN_INC + Rng::gen_range::<u64, _, _>(&mut rng, 0, MIN_INC+MAX_INC);
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::collections::HashSet;

    #[test]
    fn alphabet_size() {
        assert_eq!(ALPHABET.len(), BASE);
    }

    #[test]
    fn global_nuid_init() {
        assert_eq!(GLOBAL_NUID.lock().unwrap().pre.len(), PRE_LEN);
        assert_ne!(GLOBAL_NUID.lock().unwrap().seq, 0);
    }

    #[test]
    fn nuid_rollover() {
        let mut n = NUID::new();
        n.seq = MAX_SEQ;
        let old = n.pre.to_vec().clone();
        n.next();
        assert_ne!(n.pre.to_vec(), old);

        let mut n = NUID::new();
        n.seq = 1;
        let old = n.pre.to_vec().clone();
        n.next();
        assert_eq!(n.pre.to_vec(), old);
    }

    #[test]
    fn nuid_len() {
        let id = next();
        assert_eq!(id.len(), TOTAL_LEN);
    }

    #[test]
    fn proper_prefix() {
        let mut min: u8 = 255;
        let mut max: u8 = 0;

        for nn in ALPHABET.iter() {
            let n = *nn;
            if n < min {
                min = n;
            }
            if n > max {
                max = n;
            }
        }

        for _ in 0..100_000 {
            let nuid = NUID::new();
            for j in 0..PRE_LEN {
                assert!(nuid.pre[j] >= min || nuid.pre[j] <= max);
            }
        }
    }

    #[test]
    fn unique() {
        let mut set = HashSet::new();
        for _ in 0..100_000 {
            assert_eq!(set.insert(next()), true);
        }

    }
}