1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
#[cfg(feature = "serde")]
use crate::serde_utils::*;
use crate::{Aggregate, GraphError, Meta, Metadata};
use anyhow::{anyhow, Error, Result};
use std::collections::{BTreeMap, BTreeSet};
use uuid::Uuid;
/// A node in a graph.
#[derive(Clone, Debug, Default, PartialEq)]
#[cfg_attr(
feature = "serde",
derive(serde::Serialize, serde::Deserialize),
serde(rename_all = "camelCase")
)]
pub struct Node {
/// Instance metadata.
pub metadata: Metadata,
/// ID of the parent of this node, if any.
#[cfg_attr(
feature = "serde",
serde(default, skip_serializing_if = "Option::is_none")
)]
pub parent: Option<Uuid>,
/// IDs of this node's children,
#[cfg_attr(
feature = "serde",
serde(default, skip_serializing_if = "is_empty_vec")
)]
pub children: Vec<Uuid>,
/// Whether this node is a bus node for its parent.
#[cfg_attr(feature = "serde", serde(default, skip_serializing_if = "is_default"))]
pub is_bus: bool,
}
impl Node {
/// Create a new node struct with arguments.
pub fn new(
metadata: Option<Metadata>,
parent: Option<Uuid>,
children: Option<Vec<Uuid>>,
is_bus: Option<bool>,
) -> Self {
Node {
metadata: metadata.unwrap_or_default(),
parent,
children: match children {
None => vec![],
Some(x) => x,
},
is_bus: is_bus.unwrap_or(false),
}
}
/// Whether this node has no parent and is thus a root node.
pub fn is_root(&self) -> bool {
self.parent.is_none()
}
/// Whether this node has no children and is thus a leaf node.
pub fn is_leaf(&self) -> bool {
self.children.is_empty()
}
/// Number of children.
pub fn dim(&self) -> usize {
self.children.len()
}
}
impl Meta for Node {
/// Get node metadata.
fn get_meta(&self) -> &Metadata {
&self.metadata
}
}
#[derive(Clone, Debug, Default, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct NodeStoreData {
nodes: BTreeMap<Uuid, Node>,
roots: BTreeSet<Uuid>,
leafs: BTreeSet<Uuid>,
aggregate: Aggregate,
depth: Option<usize>,
}
impl HasNodeStore for NodeStoreData {
/// Get a reference to the node store.
fn node_store(&self) -> &NodeStoreData {
self
}
/// Get a mutable reference to the node store.
fn node_store_mut(&mut self) -> &mut NodeStoreData {
self
}
}
impl NodeStore for NodeStoreData {}
pub trait HasNodeStore {
fn node_store(&self) -> &NodeStoreData;
fn node_store_mut(&mut self) -> &mut NodeStoreData;
}
pub trait NodeStore: HasNodeStore {
/// The number of nodes in this store.
fn nodes_len(&self) -> usize {
self.node_store().nodes.len()
}
/// Maximum node depth or height.
fn max_node_depth(&mut self) -> usize
where
Self: Sized,
{
if let Some(depth) = self.node_store().depth {
return depth;
}
let depth = self.calculate_node_depth();
self.node_store_mut().depth = Some(depth);
depth
}
/// Whether this node store is empty.
fn is_nodes_empty(&self) -> bool {
self.nodes_len() == 0
}
/// Check whether this store contains a node with the given node ID.
fn has_node(&self, id: &Uuid) -> bool {
self.node_store().nodes.contains_key(id)
}
/// Add a single node to this store. Setting 'safe' checks whether this node's
/// references exist and detects cyclic hierarchies.
fn add_node(&mut self, node: Node, safe: bool) -> Result<Option<Node>>
where
Self: Sized,
{
if safe {
self.check_node(&node)?;
}
let id = node.id().to_owned();
let replaced = self.del_node(&id);
self.node_store_mut().aggregate.add(node.get_meta());
if node.is_leaf() {
self.node_store_mut().leafs.insert(id);
}
if node.is_root() {
self.node_store_mut().roots.insert(id);
}
if node.parent.is_some() || !node.children.is_empty() {
self.node_store_mut().depth = None;
}
self.node_store_mut().nodes.insert(id, node);
Ok(replaced)
}
/// Extend this node store with new nodes. Setting 'safe' checks whether all node
/// references exist and detects cyclic hierarchies after adding them to the store
/// first.
fn extend_nodes(&mut self, nodes: Vec<Node>, safe: bool) -> Result<Vec<Node>>
where
Self: Sized,
{
let mut replaced = vec![];
for node in nodes.clone().into_iter() {
if let Some(node) = self.add_node(node, false)? {
replaced.push(node);
}
}
if safe {
for node in nodes.iter() {
self.check_node(node)?;
}
}
Ok(replaced)
}
/// Check whether a node's references exist and it doesn't partake in cyclic
/// hierarchies.
fn check_node(&self, node: &Node) -> Result<()>
where
Self: Sized,
{
if let Some(parent_id) = &node.parent {
if !self.has_node(parent_id) {
return Err(anyhow!(GraphError::NodeNotInStore(parent_id.to_owned())));
}
}
for child_id in node.children.iter() {
if !self.has_node(child_id) {
return Err(anyhow!(GraphError::NodeNotInStore(child_id.to_owned())));
}
}
if node.is_bus && node.parent.is_none() {
return Err(anyhow!(GraphError::BusWithoutParent(node.id().to_owned())));
}
// Use query functions in safe mode to detect any cyclic hierarchies.
// Pretty brute-force, but works.
self.ascendant_nodes(node.id(), true, true, None, None)
.try_fold((), |_, r| r.map(|_| ()))?;
self.descendant_nodes(node.id(), true, true, None, None)
.try_fold((), |_, r| r.map(|_| ()))?;
Ok(())
}
/// Get a reference to a node.
fn get_node(&self, id: &Uuid) -> Option<&Node> {
self.node_store().nodes.get(id)
}
/// Get a reference to a node as as result.
fn get_node_err(&self, id: &Uuid) -> Result<&Node> {
match self.node_store().nodes.get(id) {
Some(node) => Ok(node),
None => Err(anyhow!(GraphError::NodeNotInStore(id.to_owned()))),
}
}
/// Get a mutable reference to a node.
fn get_node_mut(&mut self, node_id: &Uuid) -> Option<&mut Node> {
self.node_store_mut().nodes.get_mut(node_id)
}
/// Delete node from this store.
fn del_node(&mut self, node_id: &Uuid) -> Option<Node> {
let store = self.node_store_mut();
let deleted = store.nodes.remove(node_id);
if let Some(deleted) = deleted.as_ref() {
store.aggregate.subtract(deleted.get_meta());
store.roots.remove(node_id);
store.leafs.remove(node_id);
store.depth = None;
}
deleted
}
/// Update max node depth.
fn calculate_node_depth(&self) -> usize
where
Self: Sized,
{
self.leaf_ids()
.filter_map(|id| self.node_depth(&id, false, None, None).ok())
.max()
.unwrap_or(0)
}
/// Get all node IDs in this store.
fn all_node_ids(&self) -> impl Iterator<Item = Uuid> {
self.node_store().nodes.keys().copied()
}
/// Get all node IDs in this store.
fn all_nodes(&self) -> impl Iterator<Item = &Node> {
self.node_store().nodes.values()
}
/// Get all root node IDs in this store.
fn root_ids(&self) -> impl Iterator<Item = Uuid> {
self.node_store().roots.iter().copied()
}
/// Get all root nodes in this store.
fn root_nodes(&self) -> impl Iterator<Item = &Node> {
self.node_store()
.roots
.iter()
.filter_map(|id| self.get_node(id))
}
/// Get all leaf node IDs in this store.
fn leaf_ids(&self) -> impl Iterator<Item = Uuid> {
self.node_store().leafs.iter().copied()
}
/// Get all leaf nodes in this store.
fn leaf_nodes(&self) -> impl Iterator<Item = &Node> {
self.node_store()
.leafs
.iter()
.filter_map(|id| self.get_node(id))
}
/// Set a new parent value for the given child ID. Returns an error if the child
/// node does not exist in the store. Setting the parent ID to None removes the
/// parent-child relationship.
fn set_parent(&mut self, child_id: &Uuid, parent_id: Option<&Uuid>) -> Result<()> {
// Remove child from current parent.
if let Some(child) = self.get_node(child_id) {
if let Some(current_parent_id) = child.parent {
let add_to_leafs = {
if let Some(current_parent) = self.get_node_mut(¤t_parent_id) {
current_parent.children.retain(|x| x != child_id);
current_parent.is_leaf()
} else {
false
}
};
if add_to_leafs {
self.node_store_mut().leafs.insert(current_parent_id);
}
}
} else {
return Err(anyhow!(GraphError::NodeNotInStore(child_id.to_owned())));
}
// Set new parent value.
if let Some(parent_id) = parent_id {
if self.has_node(parent_id) {
if let Some(child) = self.get_node_mut(child_id) {
child.parent = Some(parent_id.to_owned());
self.node_store_mut().roots.remove(child_id);
}
if let Some(parent) = self.get_node_mut(parent_id) {
parent.children.push(child_id.to_owned());
self.node_store_mut().leafs.remove(parent_id);
}
} else {
return Err(anyhow!(GraphError::NodeNotInStore(parent_id.to_owned())));
}
} else if let Some(child) = self.get_node_mut(child_id) {
child.parent = None;
child.is_bus = false;
self.node_store_mut().roots.insert(*child_id);
}
self.node_store_mut().depth = None;
Ok(())
}
/// Set the is_bus value of a given node ID.
fn set_bus(&mut self, node_id: &Uuid, is_bus: bool) -> Result<()> {
if let Some(node) = self.get_node_mut(node_id) {
if is_bus && node.parent.is_none() {
return Err(anyhow!(GraphError::BusWithoutParent(node_id.to_owned())));
}
node.is_bus = is_bus;
} else {
return Err(anyhow!(GraphError::NodeNotInStore(node_id.to_owned())));
}
Ok(())
}
/// Get the bus node IDs that fall directly under the given parent ID.
fn bus_ids(&self, parent_id: &Uuid) -> Result<impl Iterator<Item = Uuid>> {
Ok(self
.bus_nodes(parent_id)?
.into_iter()
.map(|node| node.id())
.copied())
}
/// Get the bus nodes that fall directly under the given parent ID.
fn bus_nodes(&self, parent_id: &Uuid) -> Result<impl Iterator<Item = &Node>> {
if let Some(parent) = self.get_node(parent_id) {
Ok(parent.children.iter().filter_map(|id| {
self.get_node(id)
.and_then(|node| if node.is_bus { Some(node) } else { None })
}))
} else {
Err(anyhow!(GraphError::NodeNotInStore(parent_id.to_owned())))
}
}
/// Get ascendant node IDs of a given node. Setting `safe` checks for cyclic
/// hierarchies along the way. `only_root` only includes the final root node.
/// `root_ids` are nodes to consider as (additional) root nodes in this query.
/// `height` determines the maximum height at which the ancestor is considered a
/// root node.
fn ascendant_ids<'a, 'n>(
&'n self,
node_id: &'a Uuid,
safe: bool,
only_root: bool,
root_ids: Option<&'a BTreeSet<Uuid>>,
height: Option<usize>,
) -> impl Iterator<Item = Result<&'n Uuid, Error>>
where
Self: Sized,
{
AscendantIterator::new(self, node_id, safe, only_root, root_ids, height).into_iter()
}
/// Get ascendant nodes of a given node. Setting `safe` checks for cyclic
/// hierarchies along the way. `only_root` only includes the final root node.
/// `root_ids` are nodes to consider as (additional) root nodes in this query.
/// `height` determines the maximum height at which the ancestor is considered a
/// root node.
fn ascendant_nodes<'a, 'n>(
&'n self,
node_id: &'a Uuid,
safe: bool,
only_root: bool,
root_ids: Option<&'a BTreeSet<Uuid>>,
height: Option<usize>,
) -> impl Iterator<Item = Result<&'n Node, Error>>
where
Self: Sized,
{
self.ascendant_ids(node_id, safe, only_root, root_ids, height)
.filter_map(|r| match r {
Ok(id) => self.get_node(id).map(|n| Ok(n)),
Err(e) => Some(Err(e)),
})
}
/// Node depth (i.e. the number of levels that exist above). Setting `safe` checks
/// for cyclic hierarchies along the way. `root_ids` are nodes to consider as (additional) root nodes in this query.
/// `height` determines the maximum height at which the ancestor is considered a
/// root node.
fn node_depth(
&self,
node_id: &Uuid,
safe: bool,
root_ids: Option<&BTreeSet<Uuid>>,
height: Option<usize>,
) -> Result<usize>
where
Self: Sized,
{
self.ascendant_ids(node_id, safe, false, root_ids, height)
.try_fold(0usize, |acc, id| id.map(|_| acc + 1))
}
/// Get the descendant node IDs of a given node. Setting `safe` checks for cyclic
/// hierarchies. Setting `only_leaf` only includes only absolute or specified leaf
/// nodes in the result. `leaf_ids` restricts the search at the given node IDs,
/// disallowing it from going any further. `depth` specifies the maximum depth at
/// which nodes are also considered leaf nodes for this search.
fn descendant_ids<'a, 'n>(
&'n self,
node_id: &'a Uuid,
safe: bool,
only_leaf: bool,
leaf_ids: Option<&'a BTreeSet<Uuid>>,
depth: Option<usize>,
) -> impl Iterator<Item = Result<&'n Uuid, Error>>
where
Self: Sized,
{
DescendantIterator::new(self, node_id, safe, only_leaf, leaf_ids, depth).into_iter()
}
/// Get the descendant nodes of a given node. Setting `safe` checks for cyclic
/// hierarchies. Setting `only_leaf` only includes only absolute or specified leaf
/// nodes in the result. `leaf_ids` restricts the search at the given node IDs,
/// disallowing it from going any further. `depth` specifies the maximum depth with
/// respect to the given node ID to search at.
fn descendant_nodes<'a, 'n>(
&'n self,
node_id: &'a Uuid,
safe: bool,
only_leaf: bool,
leaf_ids: Option<&'a BTreeSet<Uuid>>,
depth: Option<usize>,
) -> impl Iterator<Item = Result<&'n Node, Error>>
where
Self: Sized,
{
self.descendant_ids(node_id, safe, only_leaf, leaf_ids, depth)
.filter_map(|r| match r {
Ok(id) => self.get_node(id).map(|n| Ok(n)),
Err(e) => Some(Err(e)),
})
}
/// Node height (i.e. the number of levels that exist below). Setting `safe` checks
/// for cyclic hierarchies. `leaf_ids` restricts the search at the given node IDs,
/// disallowing it from going any further. `depth` specifies the maximum depth with
/// respect to the given node ID to search at.
fn node_height(
&self,
node_id: &Uuid,
safe: bool,
leaf_ids: Option<&BTreeSet<Uuid>>,
depth: Option<usize>,
) -> Result<usize>
where
Self: Sized,
{
let mut iterator = DescendantIterator::new(self, node_id, safe, true, leaf_ids, depth);
while let Some(result) = iterator.next() {
if let Err(e) = result {
return Err(e);
}
}
return Ok(iterator.levels);
}
/// Node width in terms of (optionally specified) leaf nodes. Setting `safe` checks
/// for cyclic hierarchies. `leaf_ids` restricts the search at the given node IDs,
/// disallowing it from going any further. `depth` specifies the maximum depth with
/// respect to the given node ID to search at.
fn node_width(
&self,
node_id: &Uuid,
safe: bool,
leaf_ids: Option<&BTreeSet<Uuid>>,
depth: Option<usize>,
) -> Result<usize>
where
Self: Sized,
{
self.descendant_ids(node_id, safe, true, leaf_ids, depth)
.try_fold(0usize, |acc, id| id.map(|_| acc + 1))
}
/// Get the aggregate.
fn node_aggregate(&self) -> &Aggregate {
&self.node_store().aggregate
}
}
pub struct AscendantIterator<'a, 'n, N>
where
N: NodeStore,
{
// Iterator input data.
/// Node store to retrieve data from.
nodes: &'n N,
/// Whether to check for cyclical references.
safe: bool,
/// Whether to only return a root node.
only_root: bool,
/// What nodes are considered root nodes in the search.
root_ids: Option<&'a BTreeSet<Uuid>>,
/// The maximum number of levels above this level to include.
height: Option<usize>,
// Iterator state.
/// Last retrieved node ID.
node_id: Uuid,
/// Seen set of IDs.
seen: BTreeSet<Uuid>,
/// Whether to stop after this iteration.
stop: bool,
/// Processed levels.
levels: usize,
/// Error state, next iteration returns None.
error: bool,
}
impl<'a, 'n, N> AscendantIterator<'a, 'n, N>
where
N: NodeStore,
{
pub fn new(
nodes: &'n N,
node_id: &'a Uuid,
safe: bool,
only_root: bool,
root_ids: Option<&'a BTreeSet<Uuid>>,
height: Option<usize>,
) -> Self {
Self {
nodes,
safe,
only_root,
root_ids,
height,
node_id: *node_id,
seen: BTreeSet::default(),
stop: false,
levels: 0,
error: false,
}
}
}
impl<'a, 'n, N> Iterator for AscendantIterator<'a, 'n, N>
where
N: NodeStore,
{
type Item = Result<&'n Uuid, Error>;
fn next(&mut self) -> Option<Self::Item> {
if self.stop || Some(self.levels) == self.height || self.error {
return None;
}
// Get the parent of the current node ID under investigation.
let parent_id = self.nodes.get_node(&self.node_id)?.parent.as_ref()?;
// Safety cycle check if enabled.
if self.safe && !self.seen.insert(*parent_id) {
self.error = true;
return Some(Err(anyhow!(GraphError::CyclicAscendants(self.node_id))));
}
// The parent node under investigation.
let parent: &'n Node = self.nodes.get_node(parent_id)?;
// Bookkeeping for each iteration.
self.levels += 1;
// If we have an absolute root or node we consider to be root, stop.
if parent.is_root()
|| self.height.map(|h| h == 1).unwrap_or(false)
|| self
.root_ids
.map(|x| x.contains(parent_id))
.unwrap_or(false)
{
self.stop = true;
Some(Ok(parent_id))
} else {
// Set the node ID under investigation to the current parent.
self.node_id = *parent_id;
// We have a non-root node, check if we should only return roots and recurse
// immediately.
if self.only_root {
self.next()
} else {
Some(Ok(parent_id))
}
}
}
}
pub struct DescendantIterator<'a, 'n, N>
where
N: NodeStore,
{
// Iterator input data.
/// Node store to retrieve data from.
nodes: &'n N,
/// Whether to check for cyclical references.
safe: bool,
/// Whether to only return a leaf nodes.
only_leaf: bool,
/// What nodes are considered leaf nodes in the search.
leaf_ids: Option<&'a BTreeSet<Uuid>>,
/// The maximum number of levels beneath the starting node to include.
depth: Option<usize>,
// Iterator state.
/// Current descendant candidates.
descendants: Vec<Vec<Uuid>>,
/// Seen set of IDs.
seen: BTreeSet<Uuid>,
/// Maximum number of levels we've seen.
levels: usize,
/// Error state, next iteration returns None.
error: bool,
}
impl<'a, 'n, N> DescendantIterator<'a, 'n, N>
where
N: NodeStore,
{
pub fn new(
nodes: &'n N,
node_id: &'a Uuid,
safe: bool,
only_leaf: bool,
leaf_ids: Option<&'a BTreeSet<Uuid>>,
depth: Option<usize>,
) -> Self {
let mut descendants = nodes
.get_node(node_id)
.map(|n| n.children.clone())
.unwrap_or_default();
descendants.reverse();
let levels = if descendants.is_empty() { 0 } else { 1 };
Self {
nodes,
safe,
only_leaf,
leaf_ids,
depth,
descendants: vec![descendants],
seen: BTreeSet::from([*node_id]).into(),
levels,
error: false,
}
}
}
impl<'a, 'n, N> Iterator for DescendantIterator<'a, 'n, N>
where
N: NodeStore,
{
type Item = Result<&'n Uuid, Error>;
fn next(&mut self) -> Option<Self::Item> {
// If we're in the error state, return None.
if self.error {
return None;
}
// Get the next node ID
while self
.descendants
.last()
.map(|ds| ds.is_empty())
.unwrap_or_default()
{
self.descendants.pop();
}
let node_id = self.descendants.last_mut().and_then(|ds| ds.pop())?;
// Do a safety cycle check if enabled. Get the node right after.
if self.safe && !self.seen.insert(node_id) {
self.error = true;
return Some(Err(anyhow!(GraphError::CyclicDescendants(node_id))));
}
let node = self.nodes.get_node(&node_id)?;
// If it is an absolute leaf or a considered leaf node or at the depth, return it.
if node.is_leaf()
|| self
.leaf_ids
.map(|ids| ids.contains(&node_id))
.unwrap_or(false)
|| self.depth.map(|d| d == self.levels).unwrap_or(false)
{
Some(Ok(node.id()))
} else {
// We have a non-leaf node, so go to try and return the next one if we want only leafs.
// Append this node's children to the list in reversed order, so they are attempted first.
let mut children = node.children.clone();
children.reverse();
self.descendants.push(children);
self.levels = self.levels.max(self.descendants.len());
if self.only_leaf {
self.next()
} else {
Some(Ok(node.id()))
}
}
}
}