1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#![recursion_limit = "128"]

#[macro_use]
extern crate delegate;

use std::{
    collections::VecDeque,
    iter::Extend,
    thread,
    time::{Duration, Instant},
};

#[cfg(test)]
mod tests;

/// A rate limited queue.
pub struct RateLimitQueue<T> {
    quantum: usize,
    interval: Duration,
    queue: VecDeque<T>,
    allowance: usize,
    timepoint: Instant,
}

/// A type that represents result of `try_dequeue()`.
#[derive(Debug, Clone, Copy, PartialEq, PartialOrd, Eq, Ord, Hash)]
pub enum DequeueResult<T> {
    Data(T),
    Empty,
    Limit(Duration),
}

impl<T> DequeueResult<T> {
    pub fn is_data(&self) -> bool {
        match self {
            DequeueResult::Data(_) => true,
            _ => false,
        }
    }

    pub fn is_empty(&self) -> bool {
        match self {
            DequeueResult::Empty => true,
            _ => false,
        }
    }

    pub fn is_limit(&self) -> bool {
        match self {
            DequeueResult::Limit(_) => true,
            _ => false,
        }
    }
}

impl<T> From<Option<T>> for DequeueResult<T> {
    fn from(opt: Option<T>) -> DequeueResult<T> {
        opt.map_or(DequeueResult::Empty, DequeueResult::Data)
    }
}

impl<T> Into<Option<T>> for DequeueResult<T> {
    fn into(self) -> Option<T> {
        match self {
            DequeueResult::Data(value) => Some(value),
            DequeueResult::Empty | DequeueResult::Limit(_) => None,
        }
    }
}

impl<T> RateLimitQueue<T> {
    /// Creates an empty queue.
    ///
    /// # Examples
    ///
    /// ```
    /// # use std::time::Duration;
    /// use rate_limit_queue::RateLimitQueue;
    ///
    /// let queue: RateLimitQueue<i32> = RateLimitQueue::new(100, Duration::from_secs(1));
    /// ```
    #[inline]
    pub fn new(quantum: usize, interval: Duration) -> RateLimitQueue<T> {
        RateLimitQueue::with_capacity(0, quantum, interval)
    }

    /// Creates an empty queue with space for at least `n` elements.
    ///
    /// # Examples
    ///
    /// ```
    /// # use std::time::Duration;
    /// use rate_limit_queue::RateLimitQueue;
    ///
    /// let queue: RateLimitQueue<u32> = RateLimitQueue::with_capacity(10, 100, Duration::from_secs(1));
    /// ```
    #[inline]
    pub fn with_capacity(cap: usize, quantum: usize, interval: Duration) -> RateLimitQueue<T> {
        RateLimitQueue {
            quantum,
            interval,
            queue: VecDeque::with_capacity(cap),
            allowance: quantum,
            timepoint: Instant::now(),
        }
    }

    delegate! {
        target self.queue {
            /// Returns the number of elements the queue can hold without reallocating.
            pub fn capacity(&mut self) -> usize;
            /// Reserves the minimum capacity for exactly `additional` more elements.
            ///
            /// # Panics
            ///
            /// Panics if the new capacity overflows `usize`.
            pub fn reserve_exact(&mut self, additional: usize);
            /// Reserves capacity for at least `additional` more elements.
            ///
            /// # Panics
            ///
            /// Panics if the new capacity overflows `usize`.
            pub fn reserve(&mut self, additional: usize);
            /// Shrinks the capacity of the queue as much as possible.
            pub fn shrink_to_fit(&mut self);
            /// Shortens the queue, dropping excess elements from the back.
            pub fn truncate(&mut self, len: usize);
            /// Returns the number of elements in the queue.
            pub fn len(&self) -> usize;
            /// Returns `true` if the queue is empty.
            pub fn is_empty(&self) -> bool;
        }
    }

    /// Changes the quantum.
    pub fn set_quantum(&mut self, quantum: usize) {
        self.quantum = quantum;
    }

    /// Changes the interval.
    pub fn set_interval(&mut self, interval: Duration) {
        self.interval = interval;
    }

    /// Appends an element to the back of the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// # use std::time::Duration;
    /// use rate_limit_queue::RateLimitQueue;
    ///
    /// let mut queue = RateLimitQueue::new(100, Duration::from_secs(1));
    /// queue.enqueue(1);
    /// queue.enqueue(2);
    /// ```
    pub fn enqueue(&mut self, value: T) {
        self.queue.push_back(value);
    }

    /// Removes the first element and returns it, or `None` if the queue is empty.
    ///
    /// Sleeps if the limit has been reached.
    ///
    /// # Examples
    ///
    /// ```
    /// # use std::time::Duration;
    /// use rate_limit_queue::RateLimitQueue;
    ///
    /// let mut queue = RateLimitQueue::new(100, Duration::from_secs(1));
    /// queue.enqueue(1);
    /// queue.enqueue(2);
    ///
    /// assert_eq!(queue.dequeue(), Some(1));
    /// assert_eq!(queue.dequeue(), Some(2));
    /// ```
    pub fn dequeue(&mut self) -> Option<T> {
        match self.try_dequeue() {
            DequeueResult::Data(value) => Some(value),
            DequeueResult::Empty => None,
            DequeueResult::Limit(rest) => {
                thread::sleep(rest);

                if let DequeueResult::Data(value) = self.try_dequeue() {
                    Some(value)
                } else {
                    unreachable!()
                }
            }
        }
    }

    /// Tries to remove the first element and return it.
    ///
    /// # Examples
    ///
    /// ```
    /// # use std::time::Duration;
    /// use rate_limit_queue::{RateLimitQueue, DequeueResult};
    ///
    /// let mut queue = RateLimitQueue::new(2, Duration::from_secs(10));
    /// queue.enqueue(1);
    /// queue.enqueue(2);
    ///
    /// assert_eq!(queue.try_dequeue(), DequeueResult::Data(1));
    /// assert_eq!(queue.try_dequeue(), DequeueResult::Data(2));
    /// assert_eq!(queue.try_dequeue(), DequeueResult::Empty);
    ///
    /// queue.enqueue(3);
    /// assert!(queue.try_dequeue().is_limit());
    /// ```
    pub fn try_dequeue(&mut self) -> DequeueResult<T> {
        if self.queue.is_empty() {
            return DequeueResult::Empty;
        }

        if self.allowance > 0 {
            self.allowance -= 1;
            return self.queue.pop_front().into();
        }

        let now = Instant::now();
        let elapsed = now.duration_since(self.timepoint);

        match self.interval.checked_sub(elapsed) {
            Some(rest) => DequeueResult::Limit(rest),
            None => {
                self.allowance = self.quantum - 1;
                self.timepoint = now;
                self.queue.pop_front().into()
            }
        }
    }

    /// Returns a front-to-back iterator.
    ///
    /// # Examples
    ///
    /// ```
    /// # use std::time::Duration;
    /// use rate_limit_queue::{RateLimitQueue, DequeueResult};
    ///
    /// let mut queue = RateLimitQueue::new(2, Duration::from_secs(10));
    /// queue.enqueue(1);
    /// queue.enqueue(2);
    ///
    /// let b: &[_] = &[&1, &2];
    /// let c: Vec<&i32> = queue.iter().collect();
    /// assert_eq!(&c[..], b);
    /// ```
    pub fn iter(&mut self) -> impl Iterator<Item = &T> {
        let allowance = &mut self.allowance;

        self.queue
            .iter()
            .take(*allowance)
            .inspect(move |_| *allowance -= 1)
    }

    /// Returns a front-to-back iterator that returns mutable references.
    ///
    /// # Examples
    ///
    /// ```
    /// # use std::time::Duration;
    /// use rate_limit_queue::{RateLimitQueue, DequeueResult};
    ///
    /// let mut queue = RateLimitQueue::new(2, Duration::from_secs(10));
    /// queue.enqueue(1);
    /// queue.enqueue(2);
    ///
    /// let b: &[_] = &[&mut 1, &mut 2];
    /// let c: Vec<&mut i32> = queue.iter_mut().collect();
    /// assert_eq!(&c[..], b);
    /// ```
    pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut T> {
        let allowance = &mut self.allowance;

        self.queue
            .iter_mut()
            .take(*allowance)
            .inspect(move |_| *allowance -= 1)
    }
}

impl<T> Extend<T> for RateLimitQueue<T> {
    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        self.queue.extend(iter)
    }
}