1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
//! DIMACS and DRAT/DPR parser

use crate::{
    clause::{Clause, ProofStep, RedundancyProperty},
    clausedatabase::{ClauseDatabase, WitnessDatabase},
    literal::{Literal, Variable},
    memory::{format_memory_usage, HeapSpace, Offset, SmallVector, Vector},
    output::{print_key_value, unreachable, Timer},
};
use std::{
    cmp,
    collections::HashMap,
    convert::TryInto,
    fs::File,
    hash::{Hash, Hasher},
    io::{BufReader, BufWriter, Error, ErrorKind, Read, Result, Seek, SeekFrom, StdinLock},
    iter::Peekable,
    panic,
    ptr::NonNull,
    slice,
};

#[derive(Copy, Clone, PartialEq, Eq)]
pub enum ProofSyntax {
    Dimacs,
    Rup,
    Drat,
    Dpr,
    Dsr,
}

#[allow(dead_code)]
impl ProofSyntax {
    fn has_header(self) -> bool {
        self == ProofSyntax::Dimacs
    }
    fn has_deletion(self) -> bool {
        match self {
            ProofSyntax::Dimacs | ProofSyntax::Rup => false,
            _ => true,
        }
    }
    fn has_pr(self) -> bool {
        self == ProofSyntax::Dpr
    }
    fn has_sr(self) -> bool {
        self == ProofSyntax::Dsr
    }
}

/// The static singleton instance of the clause database.
///
/// It needs to be static so that hash and equality functions can access it.
pub static mut CLAUSE_DATABASE: NonNull<ClauseDatabase> = NonNull::dangling();

/// Static singleton instance of the witness database.
///
/// This should be made non-static.
pub static mut WITNESS_DATABASE: NonNull<WitnessDatabase> = NonNull::dangling();

/// Wrapper to access the clause database safely in a single-threaded context.
pub fn clause_db() -> &'static mut ClauseDatabase {
    unsafe { CLAUSE_DATABASE.as_mut() }
}
/// Wrapper to access the witness database safely in a single-threaded context.
pub fn witness_db() -> &'static mut WitnessDatabase {
    unsafe { WITNESS_DATABASE.as_mut() }
}

/// Release the memory by both clause and witness database.
pub fn free_clause_database() {
    unsafe {
        Box::from_raw(CLAUSE_DATABASE.as_ptr());
        Box::from_raw(WITNESS_DATABASE.as_ptr());
    }
}

/// CNF and DRAT/DPR parser.
#[derive(Debug, PartialEq)]
pub struct Parser {
    /// The redundancy property identifying the proof format.
    pub redundancy_property: RedundancyProperty,
    /// The highest variable parsed so far
    pub maxvar: Variable,
    /// For RAT, the pivot (first literal) for each clause
    ///
    /// It is necessary to store this because the clauses will be sorted
    /// (and watches will be shuffled).
    pub clause_pivot: Vector<Literal>,
    /// The first clause that is part of the proof (and not the input formula)
    pub proof_start: Clause,
    /// The proof steps
    pub proof: Vector<ProofStep>,
    /// How many proof steps we want to parse
    pub max_proof_steps: Option<usize>,
    /// Print diagnostics and timing information
    pub verbose: bool,
}

impl Parser {
    /// Create a new parser.
    ///
    /// *Note*: this allocates the static clause and witness databases, so this should only be called once.
    pub fn new() -> Parser {
        unsafe {
            CLAUSE_DATABASE =
                NonNull::new_unchecked(Box::into_raw(Box::new(ClauseDatabase::new())));
            WITNESS_DATABASE =
                NonNull::new_unchecked(Box::into_raw(Box::new(WitnessDatabase::new())));
        }
        Parser {
            redundancy_property: RedundancyProperty::RAT,
            maxvar: Variable::new(0),
            clause_pivot: Vector::new(),
            proof_start: Clause::new(0),
            proof: Vector::new(),
            max_proof_steps: None,
            verbose: true,
        }
    }
    /// Returns true if we are parsing a (D)PR proof.
    pub fn is_pr(&self) -> bool {
        self.redundancy_property == RedundancyProperty::PR
    }
}

/// A hash table that maps clauses (sets of literals) to clause identifiers.
pub trait HashTable {
    /// Add a new clause to the hashtable.
    fn add_clause(&mut self, clause: Clause);
    /// Find a clause that is equivalent to given clause.
    ///
    /// If delete is true, delete the found clause.
    fn find_equal_clause(&mut self, needle: Clause, delete: bool) -> Option<Clause>;
    /// Return true if this exact clause is active.
    fn clause_is_active(&self, needle: Clause) -> bool;
    /// Delete this exact clause, return true if that succeeded.
    fn delete_clause(&mut self, needle: Clause) -> bool;
}

/// A hash table with a fixed size
///
/// This should work exactly like the one used in `drat-trim`.
/// Given that we expect the number of clauses in the hash table
/// not to exceed a couple million this should be faster and leaner than
/// [DynamicHashTable](struct.DynamicHashTable.html).
pub struct FixedSizeHashTable(Vector<Vector<Clause>>);

/// Return the hash bucket to which this clause belongs.
fn bucket_index(clause: &[Literal]) -> usize {
    clause_hash(clause) % FixedSizeHashTable::SIZE
}

impl FixedSizeHashTable {
    /// The number of buckets in our hash table (`drat-trim` uses a million)
    const SIZE: usize = 2 * 1024 * 1024;
    /// The initial size of each bucket.
    ///
    /// We could increase this to at least use `malloc_usable_size` (system-dependent).
    const BUCKET_INITIAL_SIZE: u16 = 4;
    /// Allocate the hash table.
    #[allow(clippy::new_without_default)]
    pub fn new() -> FixedSizeHashTable {
        FixedSizeHashTable(Vector::from_vec(vec![
            Vector::with_capacity(
                FixedSizeHashTable::BUCKET_INITIAL_SIZE.into()
            );
            FixedSizeHashTable::SIZE
        ]))
    }
}

/// An iterator over the elements of the hash table
pub struct FixedSizeHashTableIterator<'a> {
    /// The iterator over the buckets
    buckets: slice::Iter<'a, Vector<Clause>>,
    /// The iterator over a single bucket
    bucket: slice::Iter<'a, Clause>,
}

impl<'a> Iterator for FixedSizeHashTableIterator<'a> {
    type Item = &'a Clause;
    fn next(&mut self) -> Option<Self::Item> {
        self.bucket.next().or_else(|| {
            self.buckets.next().and_then(|next_bucket| {
                self.bucket = next_bucket.iter();
                self.bucket.next()
            })
        })
    }
}

impl<'a> IntoIterator for &'a FixedSizeHashTable {
    type Item = &'a Clause;
    type IntoIter = FixedSizeHashTableIterator<'a>;
    fn into_iter(self) -> Self::IntoIter {
        FixedSizeHashTableIterator {
            buckets: self.0.iter(),
            bucket: self.0[0].iter(),
        }
    }
}

impl HashTable for FixedSizeHashTable {
    fn add_clause(&mut self, clause: Clause) {
        self.0[bucket_index(clause_db().clause(clause))].push(clause);
    }
    fn find_equal_clause(&mut self, needle: Clause, delete: bool) -> Option<Clause> {
        let bucket = &mut self.0[bucket_index(clause_db().clause(needle))];
        for offset in 0..bucket.len() {
            let clause = bucket[offset];
            if clause_db().clause(needle) == clause_db().clause(clause) {
                if delete {
                    bucket.swap_remove(offset);
                }
                return Some(clause);
            }
        }
        None
    }
    fn clause_is_active(&self, needle: Clause) -> bool {
        self.0[bucket_index(clause_db().clause(needle))]
            .iter()
            .any(|&clause| needle == clause)
    }
    fn delete_clause(&mut self, needle: Clause) -> bool {
        self.0[bucket_index(clause_db().clause(needle))]
            .iter()
            .position(|&clause| needle == clause)
            .map(|offset| self.0[bucket_index(clause_db().clause(needle))].swap_remove(offset))
            .is_some()
    }
}

impl HeapSpace for FixedSizeHashTable {
    fn heap_space(&self) -> usize {
        self.0.heap_space()
    }
}

/// A hashtable that simply uses the standard `HashMap`
///
/// This maps clauses (by equality) to a a list of clause identifiers.
/// We chose `SmallVector<Clause>` for the latter because most clauses are
/// not duplicated. This way we can avoid one allocation for unique clauses.
pub struct DynamicHashTable(HashMap<ClauseHashEq, SmallVector<Clause>>);

impl DynamicHashTable {
    /// Create a new empty hash table.
    pub fn new() -> DynamicHashTable {
        DynamicHashTable(HashMap::new())
    }
}
impl HashTable for DynamicHashTable {
    fn add_clause(&mut self, clause: Clause) {
        let key = ClauseHashEq(clause);
        self.0
            .entry(key)
            .or_insert_with(SmallVector::default)
            .push(clause)
    }
    fn find_equal_clause(&mut self, needle: Clause, delete: bool) -> Option<Clause> {
        self.0
            .get_mut(&ClauseHashEq(needle))
            .and_then(|equal_clauses| {
                let first = equal_clauses.first();
                invariant!(first != Some(needle));
                if delete {
                    equal_clauses.swap_remove(0);
                }
                first
            })
    }
    // these are not optimized but only used in sick-check
    fn clause_is_active(&self, needle: Clause) -> bool {
        self.0
            .get(&ClauseHashEq(needle))
            .map_or(false, |vector| !vector.is_empty())
    }
    fn delete_clause(&mut self, needle: Clause) -> bool {
        self.0
            .get_mut(&ClauseHashEq(needle))
            .map_or(false, |equal_clauses| {
                let mut i = 0;
                while equal_clauses[i] != needle {
                    i += 1;
                    invariant!(i < equal_clauses.len());
                }
                invariant!(i == 0);
                equal_clauses.swap_remove(i);
                true
            })
    }
}

/// Wrapper struct around clause implementing hash and equality by looking
/// at the literals in the clause database.
#[derive(Debug, Eq, Clone, Copy)]
pub struct ClauseHashEq(pub Clause);

impl Hash for ClauseHashEq {
    fn hash<H: Hasher>(&self, hasher: &mut H) {
        clause_hash(clause_db().clause(self.0)).hash(hasher);
    }
}

impl PartialEq for ClauseHashEq {
    fn eq(&self, other: &ClauseHashEq) -> bool {
        clause_db().clause(self.0) == clause_db().clause(other.0)
    }
}

/// Parse a formula and a proof file.
pub fn parse_files(formula_file: &str, proof_file: &str, memory_usage_breakdown: bool) -> Parser {
    let mut parser = Parser::new();
    let mut clause_ids = FixedSizeHashTable::new();
    // let mut clause_ids = DynamicHashTable::new();
    run_parser(&mut parser, formula_file, proof_file, &mut clause_ids);
    if memory_usage_breakdown {
        print_memory_usage(&parser, &clause_ids);
    }
    parser
}

/// Print the memory usage of a parser (useful after parsing).
fn print_memory_usage(parser: &Parser, clause_ids: &impl HashTable) {
    let usages = vec![
        ("db", clause_db().heap_space()),
        ("hash-table", clause_ids.heap_space()),
        ("proof", parser.proof.heap_space()),
        ("rest", parser.clause_pivot.heap_space()),
    ];
    let total = usages.iter().map(|pair| pair.1).sum();
    print_key_value("parser memory (MB)", format_memory_usage(total));
    for (name, usage) in usages {
        print_key_value(&format!("memory-{}", name), format_memory_usage(usage));
    }
}

/// Parse a formula.
///
/// This requires the proof file as well to determine the proof format,
/// which is necessary for initialization of the witness database.
pub fn run_parser_on_formula(
    mut parser: &mut Parser,
    formula_file: &str,
    proof_file: &str,
    clause_ids: &mut impl HashTable,
) {
    parser.redundancy_property = proof_format_by_extension(&proof_file);
    if parser.verbose {
        comment!("mode: {}", parser.redundancy_property);
    }
    let mut _timer = Timer::name("parsing formula");
    if !parser.verbose {
        _timer.disabled = true;
    }
    parse_formula(
        &mut parser,
        clause_ids,
        read_compressed_file(formula_file, false),
    )
    .unwrap_or_else(|err| die!("failed to parse formula: {}", err));
}

/// Parse a formula and a proof file using a given hash table.
pub fn run_parser(
    mut parser: &mut Parser,
    formula: &str,
    proof_file: &str,
    clause_ids: &mut impl HashTable,
) {
    let binary = is_binary_drat(proof_file);
    run_parser_on_formula(parser, formula, proof_file, clause_ids);
    let mut _timer = Timer::name("parsing proof");
    if !parser.verbose {
        _timer.disabled = true;
    }
    if binary && parser.verbose {
        comment!("binary proof mode");
    }
    parse_proof(
        &mut parser,
        clause_ids,
        read_compressed_file(proof_file, binary),
        binary,
    )
    .unwrap_or_else(|err| die!("failed to parse proof: {}", err));
    clause_db().shrink_to_fit();
    witness_db().shrink_to_fit();
    parser.clause_pivot.shrink_to_fit();
    parser.proof.shrink_to_fit();
}

/// Open a file for reading.
/// # Panics
/// Panics on error.
pub fn open_file(filename: &str) -> File {
    File::open(filename).unwrap_or_else(|err| die!("cannot open file: {}", err))
}

/// Open a file for writing.
/// # Panics
/// Panics on error.
pub fn open_file_for_writing(filename: &str) -> BufWriter<File> {
    BufWriter::new(
        File::create(filename).unwrap_or_else(|err| die!("cannot open file for writing: {}", err)),
    )
}

/// File extension of Zstandard archives.
const ZSTD: &str = ".zst";
/// File extension of Gzip archives.
const GZIP: &str = ".gz";
/// File extension of Bzip2 archives.
const BZIP2: &str = ".bz2";
/// File extension of XZ archives.
const XZ: &str = ".xz";
/// File extension of LZ4 archives.
const LZ4: &str = ".lz4";

/// Strip the compression format off a filename.
///
/// If the filename ends with a known archive extension,
/// return the filname without extension and the extension.
/// Otherwise return the unmodified filename and the empty string.
fn compression_format_by_extension(filename: &str) -> (&str, &str) {
    let mut basename = filename;
    let mut compression_format = "";
    for extension in &[ZSTD, GZIP, BZIP2, LZ4, XZ] {
        if filename.ends_with(extension) {
            compression_format = extension;
            basename = &filename[0..filename.len() - extension.len()];
            break;
        }
    }
    (basename, compression_format)
}

/// Determine the proof format based on the proof filename.
pub fn proof_format_by_extension(proof_filename: &str) -> RedundancyProperty {
    let (basename, _compression_format) = compression_format_by_extension(proof_filename);
    if basename.ends_with(".drat") {
        RedundancyProperty::RAT
    } else if basename.ends_with(".pr") || basename.ends_with(".dpr") {
        RedundancyProperty::PR
    } else {
        RedundancyProperty::RAT
    }
}

impl RedundancyProperty {
    /// Give the canonical file extension for proofs based on this redundancy property.
    pub fn file_extension(&self) -> &str {
        match self {
            RedundancyProperty::RAT => "drat",
            RedundancyProperty::PR => "dpr",
        }
    }
}

/// Return an [Input](struct.Input.html) to read from a possibly compressed file.
///
/// If the file is compressed it is transparently uncompressed.
/// If the filename is "-", returns an [Input](struct.Input.html) reading data from stdin.
/// Argument `binary` is passed on to [Input](struct.Input.html).
pub fn read_compressed_file_or_stdin<'a>(
    filename: &'a str,
    binary: bool,
    stdin: StdinLock<'a>,
) -> Input<'a> {
    match filename {
        "-" => Input::new(Box::new(stdin.bytes().map(panic_on_error)), binary),
        filename => read_compressed_file(filename, binary),
    }
}

/// Return an [Input](struct.Input.html) to read from a possibly compressed file.
///
/// If the file is compressed it is transparently uncompressed.
/// Argument `binary` is passed on to [Input](struct.Input.html).
pub fn read_compressed_file(filename: &str, binary: bool) -> Input {
    let file = open_file(filename);
    Input::new(read_from_compressed_file(file, filename), binary)
}

/// Return an Iterator to read from a possibly compressed file.
///
/// If the file is compressed it is transparently uncompressed.
fn read_from_compressed_file(file: File, filename: &str) -> Box<dyn Iterator<Item = u8>> {
    let (_basename, compression_format) = compression_format_by_extension(filename);
    if compression_format == "" {
        return Box::new(BufReader::new(file).bytes().map(panic_on_error));
    }
    match compression_format {
        ZSTD => {
            let de = zstd::stream::read::Decoder::new(file)
                .unwrap_or_else(|err| die!("failed to decompress ZST archive: {}", err));
            Box::new(de.bytes().map(panic_on_error))
        }
        GZIP => {
            let de = flate2::read::GzDecoder::new(file);
            Box::new(de.bytes().map(panic_on_error))
        }
        BZIP2 => {
            let de = bzip2::read::BzDecoder::new(file);
            Box::new(de.bytes().map(panic_on_error))
        }
        XZ => {
            let de = xz2::read::XzDecoder::new(file);
            Box::new(de.bytes().map(panic_on_error))
        }
        LZ4 => {
            let de = lz4::Decoder::new(file)
                .unwrap_or_else(|err| die!("failed to decode LZ4 archive: {}", err));
            Box::new(de.bytes().map(panic_on_error))
        }
        _ => unreachable(),
    }
}

/// Unwraps a result, panicking on error.
pub fn panic_on_error<T>(result: Result<T>) -> T {
    result.unwrap_or_else(|error| die!("{}", error))
}

/// Add a literal to the clause or witness database.
///
/// If the literal is zero, the current clause or witness will be terminated.
fn add_literal(
    parser: &mut Parser,
    clause_ids: &mut impl HashTable,
    state: ProofParserState,
    literal: Literal,
) {
    parser.maxvar = cmp::max(parser.maxvar, literal.variable());
    match state {
        ProofParserState::Clause => {
            clause_db().push_literal(literal);
            if parser.is_pr() && literal.is_zero() {
                witness_db().push_literal(literal);
            }
        }
        ProofParserState::Witness => {
            invariant!(parser.is_pr());
            witness_db().push_literal(literal);
            if literal.is_zero() {
                clause_db().push_literal(literal);
            }
        }
        ProofParserState::Deletion => {
            clause_db().push_literal(literal);
            if literal.is_zero() {
                add_deletion(parser, clause_ids);
            }
        }
        ProofParserState::Start => unreachable(),
    }
    match state {
        ProofParserState::Clause | ProofParserState::Witness => {
            if literal.is_zero() {
                clause_ids.add_clause(clause_db().last_clause());
            }
        }
        _ => (),
    }
}

/// Add a deletion to the proof.
///
/// Looks up the last parsed clause in the hash table and adds the deletion upon success.
fn add_deletion(parser: &mut Parser, clause_ids: &mut impl HashTable) {
    let clause = clause_db().last_clause();
    match clause_ids.find_equal_clause(clause, /*delete=*/ true) {
        None => {
            if parser.verbose {
                warn!(
                    "Deleted clause is not present in the formula: {}",
                    clause_db().clause_to_string(clause)
                );
            }
            // Need this for sickcheck
            parser
                .proof
                .push(ProofStep::deletion(Clause::DOES_NOT_EXIST))
        }
        Some(clause) => parser.proof.push(ProofStep::deletion(clause)),
    }
    clause_db().pop_clause();
}

/// Compute the hash of a clause. This is the same hash function `drat-trim` uses.
fn clause_hash(clause: &[Literal]) -> usize {
    let mut sum: usize = 0;
    let mut prod: usize = 1;
    let mut xor: usize = 0;
    for &literal in clause {
        prod = prod.wrapping_mul(literal.as_offset());
        sum = sum.wrapping_add(literal.as_offset());
        xor ^= literal.as_offset();
    }
    ((1023 * sum + prod) ^ (31 * xor))
}

/// Check if a character is a decimal digit.
fn is_digit(value: u8) -> bool {
    value >= b'0' && value <= b'9'
}

/// Check if a character is a decimal digit or a dash.
fn is_digit_or_dash(value: u8) -> bool {
    is_digit(value) || value == b'-'
}

// Error messages.
/// A numeric overflow. This should only happen for user input.
const OVERFLOW: &str = "overflow while parsing number";
/// Parser error ("unexpected EOF")
const EOF: &str = "premature end of file";
/// Parser error (`expected ...`)
const NUMBER: &str = "expected number";
/// Parser error (`expected ...`)
const SPACE: &str = "expected space";
/// Parser error (`expected ...`)
const NUMBER_OR_SPACE: &str = "expected number or space";
/// Parser error (`expected ...`)
const NUMBER_OR_MINUS: &str = "expected number or \"-\"";
/// Parser error (`expected ...`)
const P_CNF: &str = "expected \"p cnf\"";
/// Parser error (`expected ...`)
const DRAT: &str = "expected DRAT instruction";
/// Parser error (`expected ...`)
const NEWLINE: &str = "expected newline";

/// Parse a decimal number.
///
/// Consumes one or more decimal digits, returning the value of the
/// resulting number on success. Fails if there is no digit or if the digits do
/// not end in a whitespace or newline.
fn parse_u64(input: &mut Input) -> Result<u64> {
    match input.peek() {
        None => return Err(input.error(NUMBER)),
        Some(c) => {
            if !is_digit(c) {
                return Err(input.error(NUMBER));
            }
        }
    }
    let mut value: u64 = 0;
    while let Some(c) = input.peek() {
        if is_space(c) {
            break;
        }
        if !is_digit(c) {
            return Err(input.error(NUMBER_OR_SPACE));
        }
        input.next();
        value = value
            .checked_mul(10)
            .and_then(|val| val.checked_add(u64::from(c - b'0')))
            .ok_or_else(|| input.error(OVERFLOW))?;
    }
    Ok(value)
}

/// Just like `parse_u64` but convert the result to an i32.
fn parse_i32(input: &mut Input) -> Result<i32> {
    let value = parse_u64(input)?;
    if value > i32::max_value().try_into().unwrap() {
        Err(input.error(OVERFLOW))
    } else {
        Ok(value as i32)
    }
}

/// Parse a [Literal](../literal/struct.Literal.html).
///
/// Consumes zero or more whitespace characters followd
/// by an optional "-", a number of at least one decimal digit,
/// trailed by whitespace. If the number is zero, consumes all whitespace
/// until the next newline.
pub fn parse_literal(input: &mut Input) -> Result<Literal> {
    parse_any_space(input);
    match input.peek() {
        None => Err(input.error(EOF)),
        Some(c) if is_digit_or_dash(c) => {
            let sign = if c == b'-' {
                input.next();
                -1
            } else {
                1
            };
            let number = parse_i32(input)?;
            if number == 0 {
                parse_any_whitespace(input);
            }
            Ok(Literal::new(sign * number))
        }
        _ => Err(input.error(NUMBER_OR_MINUS)),
    }
}

/// Parse a literal from a compressed proof.
pub fn parse_literal_binary(input: &mut Input) -> Result<Literal> {
    let mut i = 0;
    let mut result = 0;
    while let Some(value) = input.next() {
        if (u64::from(value & 0x7f) << (7 * i)) > u32::max_value().into() {
            return Err(input.error(OVERFLOW));
        }
        result |= u32::from(value & 0x7f) << (7 * i);
        i += 1;
        if (value & 0x80) == 0 {
            break;
        }
    }
    Ok(Literal::from_raw(result))
}

/// Parse a DIMACS comment starting with "c ".
///
/// Consumes a leading "c" and any characters until (including) the next newline.
fn parse_comment(input: &mut Input) -> Result<()> {
    match input.peek() {
        Some(b'c') => {
            input.next();
            while let Some(c) = input.next() {
                if c == b'\n' {
                    return Ok(());
                }
            }
            Err(input.error(NEWLINE))
        }
        _ => Err(input.error("")),
    }
}

/// Parse one or more spaces.
fn parse_some_spaces(input: &mut Input) -> Result<()> {
    if input.peek() != Some(b' ') {
        return Err(input.error(SPACE));
    }
    while let Some(b' ') = input.peek() {
        input.next();
    }
    Ok(())
}

/// Parse zero or more spaces.
fn parse_any_space(input: &mut Input) {
    while let Some(c) = input.peek() {
        if c != b' ' {
            break;
        }
        input.next();
    }
}

/// Parse zero or more spaces or linebreaks.
fn parse_any_whitespace(input: &mut Input) {
    while let Some(c) = input.peek() {
        if !is_space(c) {
            break;
        }
        input.next();
    }
}

/// Parse a DIMACS header.
fn parse_formula_header(input: &mut Input) -> Result<(i32, u64)> {
    while Some(b'c') == input.peek() {
        parse_comment(input)?
    }
    for &expected in b"p cnf" {
        if input.peek().map_or(true, |c| c != expected) {
            return Err(input.error(P_CNF));
        }
        input.next();
    }
    parse_some_spaces(input)?;
    let maxvar = parse_i32(input)?;
    parse_some_spaces(input)?;
    let num_clauses = parse_u64(input)?;
    parse_any_whitespace(input);
    Ok((maxvar, num_clauses))
}

/// Returns true if the character is one of the whitespace characters we allow.
fn is_space(c: u8) -> bool {
    [b' ', b'\n', b'\r'].iter().any(|&s| s == c)
}

/// Commence the addition of a new clause to the database.
///
/// Must be called before pushing th first literal with
/// [add_literal()](fn.add_literal.html).
fn open_clause(parser: &mut Parser, state: ProofParserState) -> Clause {
    let clause = clause_db().open_clause();
    if parser.is_pr() && state != ProofParserState::Deletion {
        let witness = witness_db().open_witness();
        invariant!(clause == witness);
    }
    clause
}

/// Parse a DIMACS clause.
fn parse_clause(
    parser: &mut Parser,
    clause_ids: &mut impl HashTable,
    input: &mut Input,
) -> Result<()> {
    open_clause(parser, ProofParserState::Clause);
    parser.clause_pivot.push(Literal::NEVER_READ);
    loop {
        let literal = parse_literal(input)?;
        add_literal(parser, clause_ids, ProofParserState::Clause, literal);
        if literal.is_zero() {
            return Ok(());
        }
    }
}

/// Parse a DIMACS formula.
fn parse_formula(
    parser: &mut Parser,
    clause_ids: &mut impl HashTable,
    mut input: Input,
) -> Result<()> {
    parse_formula_header(&mut input)?;
    while let Some(c) = input.peek() {
        if c == b'c' {
            parse_comment(&mut input)?;
            continue;
        }
        parse_clause(parser, clause_ids, &mut input)?;
    }
    Ok(())
}

/// Return true if the file is in binary (compressed) DRAT.
///
/// Read the first ten characters of the given file to determine
/// that, just like `drat-trim`. This works fine on real proofs.
pub fn is_binary_drat(filename: &str) -> bool {
    let mut file = open_file(filename);
    file.seek(SeekFrom::Start(0)).unwrap_or_else(|_err| {
        die!("proof file is not seekable - cannot currently determine if it has binary DRAT")
    });
    is_binary_drat_impl(read_from_compressed_file(file, filename))
}
/// Implementation of `is_binary_drat`.
fn is_binary_drat_impl(buffer: impl Iterator<Item = u8>) -> bool {
    for c in buffer {
        if (c != 100) && (c != 10) && (c != 13) && (c != 32) && (c != 45) && ((c < 48) || (c > 57))
        {
            return true;
        }
    }
    false
}

/// The state of our proof parser
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum ProofParserState {
    /// Before the start of an instruction
    Start,
    /// Inside a clause/lemma
    Clause,
    /// Inside a witness
    Witness,
    /// Inside a deletion
    Deletion,
}

/// Parse a single proof step
pub fn parse_proof_step(
    parser: &mut Parser,
    clause_ids: &mut impl HashTable,
    input: &mut Input,
    binary: bool,
    state: &mut ProofParserState,
) -> Result<Option<()>> {
    let literal_parser = if binary {
        parse_literal_binary
    } else {
        parse_literal
    };
    let mut lemma_head = true;
    let mut first_literal = None;
    while let Some(c) = input.peek() {
        if !binary && is_space(c) {
            input.next();
            continue;
        }
        if *state == ProofParserState::Start {
            *state = match c {
                b'd' => {
                    input.next();
                    open_clause(parser, ProofParserState::Deletion);
                    ProofParserState::Deletion
                }
                c if (!binary && is_digit_or_dash(c)) || (binary && c == b'a') => {
                    if binary {
                        input.next();
                    }
                    lemma_head = true;
                    let clause = open_clause(parser, ProofParserState::Clause);
                    parser.proof.push(ProofStep::lemma(clause));
                    ProofParserState::Clause
                }
                _ => return Err(input.error(DRAT)),
            };
            continue;
        }
        let literal = literal_parser(input)?;
        if parser.is_pr() && *state == ProofParserState::Clause && first_literal == Some(literal) {
            *state = ProofParserState::Witness;
        }
        if *state == ProofParserState::Clause && lemma_head {
            parser.clause_pivot.push(literal);
            first_literal = Some(literal);
            lemma_head = false;
        }
        invariant!(*state != ProofParserState::Start);
        add_literal(parser, clause_ids, *state, literal);
        if literal.is_zero() {
            *state = ProofParserState::Start;
            return Ok(Some(()));
        }
    }
    Ok(None)
}

/// Fix-up incomplete proofs.
///
/// This adds a zero if the last line was missing one.
/// Additionally it adds an empty clause as final lemma.
pub fn finish_proof(
    parser: &mut Parser,
    clause_ids: &mut impl HashTable,
    state: &mut ProofParserState,
) {
    // patch missing zero terminators
    match *state {
        ProofParserState::Clause | ProofParserState::Deletion | ProofParserState::Witness => {
            add_literal(parser, clause_ids, *state, Literal::new(0));
        }
        ProofParserState::Start => (),
    };
}

/// Parse a proof given the hashtable.
fn parse_proof(
    parser: &mut Parser,
    clause_ids: &mut impl HashTable,
    mut input: Input,
    binary: bool,
) -> Result<()> {
    parser.proof_start = Clause::new(clause_db().number_of_clauses());
    let mut state = ProofParserState::Start;
    if parser.max_proof_steps != Some(0) {
        while let Some(()) = parse_proof_step(parser, clause_ids, &mut input, binary, &mut state)? {
            if parser
                .max_proof_steps
                .map_or(false, |max_steps| parser.proof.len() == max_steps)
            {
                break;
            }
        }
    }
    finish_proof(parser, clause_ids, &mut state);
    Ok(())
}

/// Print the clause and witness databases, for debugging.
#[allow(dead_code)]
pub fn print_db(have_witnesses: bool) {
    let clause_db = &clause_db();
    let witness_db = &witness_db();
    for clause in Clause::range(0, clause_db.last_clause() + 1) {
        write_to_stdout!(
            "{}{} fields: {:?}\n",
            clause_db.clause_to_string(clause),
            if have_witnesses {
                format!(", {}", witness_db.witness_to_string(clause))
            } else {
                "".into()
            },
            clause_db.fields(clause)
        );
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[allow(unused_macros)]
    macro_rules! literals {
        ($($x:expr),*) => (Vector::from_vec(vec!($(Literal::new($x)),*)));
    }

    fn sample_formula(clause_ids: &mut impl HashTable) -> Parser {
        let mut parser = Parser::new();
        parser.redundancy_property = RedundancyProperty::RAT;
        let example = r#"c comment
p cnf 2 2
1 2 0
c comment
-1 -2 0"#;
        assert!(parse_formula(
            &mut parser,
            clause_ids,
            Input::new(Box::new(example.as_bytes().iter().cloned()), false),
        )
        .is_ok());
        parser
    }
    #[test]
    fn valid_formula_and_proof() {
        let mut clause_ids = FixedSizeHashTable::new();
        let mut parser = sample_formula(&mut clause_ids);
        let result = parse_proof(
            &mut parser,
            &mut clause_ids,
            Input::new(Box::new(b"1 2 3 0\nd 1 2 0".into_iter().cloned()), false),
            false,
        );
        assert!(result.is_ok());
        fn lit(x: i32) -> Literal {
            Literal::new(x)
        }
        fn raw(x: u32) -> Literal {
            Literal::from_raw(x)
        }
        assert_eq!(
            clause_db(),
            &ClauseDatabase::from(
                vector!(
                    raw(0),
                    raw(0),
                    lit(1),
                    lit(2),
                    lit(0),
                    raw(1),
                    raw(0),
                    lit(-2),
                    lit(-1),
                    lit(0),
                    raw(2),
                    raw(0),
                    lit(1),
                    lit(2),
                    lit(3),
                    lit(0),
                ),
                vector!(0, 5, 10)
            )
        );
        assert_eq!(witness_db(), &WitnessDatabase::from(vector!(), vector!(0)));
        assert_eq!(
            parser,
            Parser {
                redundancy_property: RedundancyProperty::RAT,
                maxvar: Variable::new(3),
                clause_pivot: vector!(Literal::NEVER_READ, Literal::NEVER_READ, Literal::new(1)),
                proof_start: Clause::new(2),
                proof: vector!(
                    ProofStep::lemma(Clause::new(2)),
                    ProofStep::deletion(Clause::new(0)),
                ),
                max_proof_steps: None,
                verbose: true,
            }
        );
    }
}

impl HeapSpace for Parser {
    fn heap_space(&self) -> usize {
        clause_db().heap_space()
            + witness_db().heap_space()
            + self.clause_pivot.heap_space()
            + self.proof.heap_space()
    }
}

/// A peekable iterator for bytes that records line and column information.
pub struct Input<'a> {
    /// The source of the input data
    source: Peekable<Box<dyn Iterator<Item = u8> + 'a>>,
    /// Whether we are parsing binary or textual data
    binary: bool,
    /// The current line number (if not binary)
    line: usize,
    /// The current column
    column: usize,
}

impl<'a> Input<'a> {
    /// Create a new `Input` from some source
    pub fn new(source: Box<dyn Iterator<Item = u8> + 'a>, binary: bool) -> Self {
        Input {
            source: source.peekable(),
            binary,
            line: 1,
            column: 1,
        }
    }
    /// Look at the next byte without consuming it
    pub fn peek(&mut self) -> Option<u8> {
        self.source.peek().cloned()
    }
    /// Create an io::Error with the given message and position information.
    pub fn error(&self, why: &'static str) -> Error {
        Error::new(
            ErrorKind::InvalidData,
            if self.binary {
                format!("{} at position {}", why, self.column)
            } else {
                format!("{} at line {} column {}", why, self.line, self.column)
            },
        )
    }
}

impl Iterator for Input<'_> {
    type Item = u8;
    fn next(&mut self) -> Option<u8> {
        self.source.next().map(|c| {
            if !self.binary && c == b'\n' {
                self.line += 1;
                self.column = 0;
            }
            self.column += 1;
            c
        })
    }
}