rat_widget/layout/structured_layout.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
use crate::pager::AreaHandle;
use ratatui::layout::{Position, Rect};
use std::cell::Cell;
use std::ops::{Index, IndexMut};
/// Container for the areas coming out of a layout function.
///
/// This is more or less a `Vec<Rect>`, but it takes a _stride_
/// as parameter and treats N Rects as one unit.
///
/// This way it can add some structure to the list and
/// express something like 'the label area for the 5th item'.
///
/// As a second feature it returns a handle for each item,
/// which can be used to retrieve the item later.
///
/// ```rust
/// # use rat_widget::layout::StructuredLayout;
/// # use std::ops::Index;
/// # use rat_widget::checkbox::{Checkbox, CheckboxState};
/// # use ratatui::prelude::*;
/// pub enum LW {
/// Label,
/// Widget
/// }
/// # impl Index<LW> for [Rect] {
/// # type Output = Rect;
/// #
/// # fn index(&self, index: LW) -> &Self::Output {
/// # match index {
/// # LW::Label => &self[0],
/// # LW::Widget => &self[1]
/// # }
/// # }
/// # }
/// #
/// # impl LW {
/// # pub fn count() -> usize {
/// # 2
/// # }
/// # }
/// #
/// # let mut buf = Buffer::default();
/// # let mut state = CheckboxState::default();
/// # use LW::*;
///
/// let mut l = StructuredLayout::new(LW::count());
///
/// // ... some layout calculations ...
/// let w0 = l.add(&[
/// Rect::new(0,0,5,1),
/// Rect::new(6,0,15,1)
/// ]);
///
/// // ... something entirely else ...
///
/// Span::from("label")
/// .render(l[w0][Label],&mut buf);
///
/// Checkbox::new()
/// .text("Check this out")
/// .render(l[w0][Widget], &mut buf, &mut state);
///
/// ```
///
#[derive(Debug, Clone)]
pub struct StructuredLayout {
// reference area.
area: Rect,
// bounding box for all areas
bounds: Cell<Option<Rect>>,
// stride within areas
stride: usize,
// list of areas
areas: Vec<Rect>,
// manual breaks
row_breaks: Vec<u16>,
}
impl Default for StructuredLayout {
fn default() -> Self {
Self {
area: Default::default(),
bounds: Cell::new(None),
stride: 1, // non standard
areas: vec![],
row_breaks: vec![],
}
}
}
impl StructuredLayout {
/// New layout with the given stride.
pub fn new(stride: usize) -> Self {
Self {
stride,
..Default::default()
}
}
/// Original area for which this layout has been calculated.
/// Can be used to invalidate a layout if the area changes.
pub fn area(&self) -> Rect {
self.area
}
/// Original area for which this layout has been calculated.
/// Can be used to invalidate a layout if the area changes.
pub fn set_area(&mut self, area: Rect) {
self.area = area;
}
/// Change detection.
pub fn width_change(&self, width: u16) -> bool {
self.area.width != width
}
/// Change detection.
pub fn height_change(&self, height: u16) -> bool {
self.area.height != height
}
/// Change detection.
pub fn pos_change(&self, pos: Position) -> bool {
self.area.as_position() != pos
}
/// Add the areas for one item.
///
/// You can refer
/// Returns a handle to access the item later.
/// You can always use a simple index too.
pub fn add(&mut self, areay: &[Rect]) -> AreaHandle {
assert_eq!(self.stride, areay.len());
// invalidate
self.bounds.set(None);
let h = AreaHandle(self.areas.len());
for a in areay {
self.areas.push(*a);
}
h
}
/// Add a manual break after the given position.
///
/// __See__
/// [SinglePager](crate::pager::SinglePager) and
/// [DualPager](crate::pager::DualPager) who can work with this.
/// Other widgets may simply ignore this.
pub fn break_after_row(&mut self, y: u16) {
// invalidate
self.bounds.set(None);
self.row_breaks.push(y + 1);
}
/// Add a manual break before the given position.
///
/// __See__
/// [SinglePager](crate::pager::SinglePager) and
/// [DualPager](crate::pager::DualPager) who can work with this.
/// Other widgets may simply ignore this.
pub fn break_before_row(&mut self, y: u16) {
// invalidate
self.bounds.set(None);
self.row_breaks.push(y);
}
/// Return the manual page breaks.
pub fn row_breaks(&self) -> &[u16] {
self.row_breaks.as_slice()
}
/// Return the manual page breaks.
pub fn row_breaks_mut(&mut self) -> &mut [u16] {
self.row_breaks.as_mut_slice()
}
/// Sort and dedup the row-breaks.
pub fn sort_row_breaks_desc(&mut self) {
self.row_breaks.sort_by(|a, b| b.cmp(a));
self.row_breaks.dedup();
}
/// Number of areas.
pub fn len(&self) -> usize {
self.areas.len()
}
/// Any areas?
pub fn is_empty(&self) -> bool {
self.areas.is_empty()
}
/// Stride per item.
pub fn stride(&self) -> usize {
self.stride
}
/// All areas. If you want to access a specific item you
/// must use the stride to calculate the offset.
pub fn as_slice(&self) -> &[Rect] {
self.areas.as_slice()
}
/// All areas. If you want to access a specific item you
/// must use the stride to calculate the offset.
pub fn as_mut_slice(&mut self) -> &mut [Rect] {
self.areas.as_mut_slice()
}
/// Iterator over all areas.
pub fn iter(&self) -> impl Iterator<Item = &'_ Rect> {
self.areas.iter()
}
/// Iterator over all areas chunked by stride.
pub fn chunked(&self) -> impl Iterator<Item = &[Rect]> {
self.areas.chunks(self.stride)
}
/// Calculate the bounding box for all areas.
pub fn bounds(&self) -> Rect {
if let Some(bounds) = self.bounds.get() {
return bounds;
}
let mut bounds;
'fine: {
for v in &self.areas {
if !v.is_empty() {
bounds = *v;
break 'fine;
}
}
bounds = Rect::new(self.area.x, self.area.y, 0, 0);
}
for v in &self.areas {
if !v.is_empty() {
bounds = bounds.union(*v);
}
}
self.bounds.set(Some(bounds));
bounds
}
}
impl Index<usize> for StructuredLayout {
type Output = [Rect];
fn index(&self, index: usize) -> &Self::Output {
&self.areas[index * self.stride..(index + 1) * self.stride]
}
}
impl IndexMut<usize> for StructuredLayout {
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
&mut self.areas[index * self.stride..(index + 1) * self.stride]
}
}
impl Index<AreaHandle> for StructuredLayout {
type Output = [Rect];
fn index(&self, index: AreaHandle) -> &Self::Output {
&self.areas[index.0 * self.stride..(index.0 + 1) * self.stride]
}
}
impl IndexMut<AreaHandle> for StructuredLayout {
fn index_mut(&mut self, index: AreaHandle) -> &mut Self::Output {
&mut self.areas[index.0 * self.stride..(index.0 + 1) * self.stride]
}
}