rat_event/lib.rs
1#![doc = include_str!("../readme.md")]
2
3use std::cmp::max;
4
5pub mod crossterm;
6pub mod util;
7
8/// All the regular and expected event-handling a widget can do.
9///
10/// All the normal key-handling, maybe dependent on an internal
11/// focus-state, all the mouse-handling.
12#[derive(Debug, Default, Clone, Copy)]
13pub struct Regular;
14
15/// Handle mouse-events only. Useful whenever you want to write new key-bindings,
16/// but keep the mouse-events.
17#[derive(Debug, Default, Clone, Copy)]
18pub struct MouseOnly;
19
20/// Popup/Overlays are a bit difficult to handle, as there is no z-order/area tree,
21/// which would direct mouse interactions. We can simulate a z-order in the
22/// event-handler by trying the things with a higher z-order first.
23///
24/// If a widget should be seen as pure overlay, it would define only a Popup
25/// event-handler. In the event-handling functions you would call all Popup
26/// event-handlers before the regular ones.
27///
28/// Example:
29/// * Context menu. If the context-menu is active, it can consume all mouse-events
30/// that fall into its range, and the widgets behind it only get the rest.
31/// * Menubar. Would define _two_ event-handlers, a regular one for all events
32/// on the main menu bar, and a popup event-handler for the menus. The event-handling
33/// function calls the popup handler first and the regular one at some time later.
34#[derive(Debug, Default, Clone, Copy)]
35pub struct Popup;
36
37/// Event-handling for a dialog like widget.
38///
39/// Similar to [Popup] but with the extra that it consumes _all_ events when active.
40/// No regular widget gets any event, and we have modal behaviour.
41#[derive(Debug, Default, Clone, Copy)]
42pub struct Dialog;
43
44/// Event-handler for double-click on a widget.
45///
46/// Events for this handler must be processed *before* calling
47/// any other event-handling routines for the same widget.
48/// Otherwise, the regular event-handling might interfere with
49/// recognition of double-clicks by consuming the first click.
50///
51/// This event-handler doesn't consume the first click, just
52/// the second one.
53#[derive(Debug, Default, Clone, Copy)]
54pub struct DoubleClick;
55
56///
57/// A very broad trait for an event handler.
58///
59/// Ratatui widgets have two separate structs, one that implements
60/// Widget/StatefulWidget and the associated State. As the StatefulWidget
61/// has a lifetime and is not meant to be kept, HandleEvent should be
62/// implemented for the state struct. It can then modify some state and
63/// the tui can be rendered anew with that changed state.
64///
65/// HandleEvent is not limited to State structs of course, any Type
66/// that wants to interact with events can implement it.
67///
68/// * Event - The actual event type.
69/// * Qualifier - The qualifier allows creating more than one event-handler
70/// for a widget.
71///
72/// This can be used as a variant of type-state, where the type given
73/// selects the widget's behaviour, or to give some external context
74/// to the widget, or to write your own key-bindings for a widget.
75///
76/// * R - Result of event-handling. This can give information to the
77/// application what changed due to handling the event. This can
78/// be very specific for each widget, but there is one general [Outcome]
79/// that describes a minimal set of results.
80///
81/// There should be one value that indicates 'I don't know this event'.
82/// This is expressed with the ConsumedEvent trait.
83///
84pub trait HandleEvent<Event, Qualifier, Return>
85where
86 Return: ConsumedEvent,
87{
88 /// Handle an event.
89 ///
90 /// * self - The widget state.
91 /// * event - Event type.
92 /// * qualifier - Event handling qualifier.
93 /// This library defines some standard values [Regular], [MouseOnly].
94 /// Further ideas:
95 /// * ReadOnly
96 /// * Special behaviour like DoubleClick, HotKey.
97 /// * Returns some result, see [Outcome]
98 fn handle(&mut self, event: &Event, qualifier: Qualifier) -> Return;
99}
100
101/// Catch all event-handler for the null state `()`.
102impl<E, Q> HandleEvent<E, Q, Outcome> for () {
103 fn handle(&mut self, _event: &E, _qualifier: Q) -> Outcome {
104 Outcome::Continue
105 }
106}
107
108/// When calling multiple event-handlers, the minimum information required
109/// from the result is consumed the event/didn't consume the event.
110///
111/// See also [flow] and [try_flow] macros.
112pub trait ConsumedEvent {
113 /// Is this the 'consumed' result.
114 fn is_consumed(&self) -> bool;
115
116 /// Or-Else chaining with `is_consumed()` as the split.
117 #[inline(always)]
118 fn or_else<F>(self, f: F) -> Self
119 where
120 F: FnOnce() -> Self,
121 Self: Sized,
122 {
123 if self.is_consumed() {
124 self
125 } else {
126 f()
127 }
128 }
129
130 /// Or-Else chaining with `is_consumed()` as the split.
131 #[inline(always)]
132 fn or_else_try<F, E>(self, f: F) -> Result<Self, E>
133 where
134 Self: Sized,
135 F: FnOnce() -> Result<Self, E>,
136 {
137 if self.is_consumed() {
138 Ok(self)
139 } else {
140 Ok(f()?)
141 }
142 }
143
144 /// And_then-chaining based on is_consumed().
145 /// Returns max(self, f()).
146 #[inline(always)]
147 fn and_then<F>(self, f: F) -> Self
148 where
149 Self: Sized + Ord,
150 F: FnOnce() -> Self,
151 {
152 if self.is_consumed() {
153 max(self, f())
154 } else {
155 self
156 }
157 }
158
159 /// And_then-chaining based on is_consumed().
160 /// Returns max(self, f()).
161 #[inline(always)]
162 fn and_then_try<F, E>(self, f: F) -> Result<Self, E>
163 where
164 Self: Sized + Ord,
165 F: FnOnce() -> Result<Self, E>,
166 {
167 if self.is_consumed() {
168 Ok(max(self, f()?))
169 } else {
170 Ok(self)
171 }
172 }
173
174 /// Then-chaining. Returns max(self, f()).
175 #[inline(always)]
176 #[deprecated(since = "1.2.2", note = "use and_then()")]
177 fn and<F>(self, f: F) -> Self
178 where
179 Self: Sized + Ord,
180 F: FnOnce() -> Self,
181 {
182 if self.is_consumed() {
183 max(self, f())
184 } else {
185 self
186 }
187 }
188
189 /// Then-chaining. Returns max(self, f()).
190 #[inline(always)]
191 #[deprecated(since = "1.2.2", note = "use and_then_try()")]
192 fn and_try<F, E>(self, f: F) -> Result<Self, E>
193 where
194 Self: Sized + Ord,
195 F: FnOnce() -> Result<Self, E>,
196 {
197 if self.is_consumed() {
198 Ok(max(self, f()?))
199 } else {
200 Ok(self)
201 }
202 }
203}
204
205impl<V, E> ConsumedEvent for Result<V, E>
206where
207 V: ConsumedEvent,
208{
209 fn is_consumed(&self) -> bool {
210 match self {
211 Ok(v) => v.is_consumed(),
212 Err(_) => true,
213 }
214 }
215}
216
217/// The baseline outcome for an event-handler.
218///
219/// A widget can define its own type, if it has more things to report.
220/// It would be nice if those types are convertible to/from Outcome.
221#[derive(Debug, Default, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
222pub enum Outcome {
223 /// The given event has not been used at all.
224 #[default]
225 Continue,
226 /// The event has been recognized, but nothing noticeable has changed.
227 /// Further processing for this event may stop.
228 /// Rendering the ui is not necessary.
229 Unchanged,
230 /// The event has been recognized and there is some change due to it.
231 /// Further processing for this event may stop.
232 /// Rendering the ui is advised.
233 Changed,
234}
235
236impl ConsumedEvent for Outcome {
237 fn is_consumed(&self) -> bool {
238 *self != Outcome::Continue
239 }
240}
241
242/// Widgets often define functions that return bool to indicate a changed state.
243/// This converts `true` / `false` to `Outcome::Changed` / `Outcome::Unchanged`.
244impl From<bool> for Outcome {
245 fn from(value: bool) -> Self {
246 if value {
247 Outcome::Changed
248 } else {
249 Outcome::Unchanged
250 }
251 }
252}
253
254/// Breaks the control-flow if the block returns a value
255/// for which [ConsumedEvent::is_consumed] is true.
256///
257/// It does the classic `into()`-conversion and returns the result.
258///
259/// *The difference to [try_flow] is that this on doesn't Ok-wrap the result.*
260///
261/// Extras: If you add a marker as in `flow!(log ident: {...});`
262/// the result of the operation is written to the log.
263#[macro_export]
264macro_rules! flow {
265 (log $n:ident: $x:expr) => {{
266 use log::debug;
267 use $crate::ConsumedEvent;
268 let r = $x;
269 if r.is_consumed() {
270 debug!("{} {:#?}", stringify!($n), r);
271 return r.into();
272 } else {
273 debug!("{} continue", stringify!($n));
274 _ = r;
275 }
276 }};
277 ($x:expr) => {{
278 use $crate::ConsumedEvent;
279 let r = $x;
280 if r.is_consumed() {
281 return r.into();
282 } else {
283 _ = r;
284 }
285 }};
286}
287
288/// Breaks the control-flow if the block returns a value
289/// for which [ConsumedEvent::is_consumed] is true.
290///
291/// It does the classic `into()`-conversion and returns the result.
292///
293/// *The difference to [flow] is that this one Ok-wraps the result.*
294///
295/// Extras: If you add a marker as in `try_flow!(log ident: {...});`
296/// the result of the operation is written to the log.
297#[macro_export]
298macro_rules! try_flow {
299 (log $n:ident: $x:expr) => {{
300 use log::debug;
301 use $crate::ConsumedEvent;
302 let r = $x;
303 if r.is_consumed() {
304 debug!("{} {:#?}", stringify!($n), r);
305 return Ok(r.into());
306 } else {
307 debug!("{} continue", stringify!($n));
308 _ = r;
309 }
310 }};
311 ($x:expr) => {{
312 use $crate::ConsumedEvent;
313 let r = $x;
314 if r.is_consumed() {
315 return Ok(r.into());
316 } else {
317 _ = r;
318 }
319 }};
320}