#[repr(transparent)]
pub struct EnableAuthenTraps(pub Integer);
Expand description

Indicates whether the SNMP agent process is permitted to generate authentication-failure traps. The value of this object overrides any configuration information; as such, it provides a means whereby all authentication-failure traps may be disabled.

Note that it is strongly recommended that this object be stored in non-volatile memory so that it remains constant between re-initializations of the network management system.

Tuple Fields

0: Integer

Methods from Deref<Target = Integer>

Reinitializes a BigInt.

The base 232 digits are ordered least significant digit first.

Returns the sign and the byte representation of the BigInt in big-endian byte order.

Examples
use num_bigint::{ToBigInt, Sign};

let i = -1125.to_bigint().unwrap();
assert_eq!(i.to_bytes_be(), (Sign::Minus, vec![4, 101]));

Returns the sign and the byte representation of the BigInt in little-endian byte order.

Examples
use num_bigint::{ToBigInt, Sign};

let i = -1125.to_bigint().unwrap();
assert_eq!(i.to_bytes_le(), (Sign::Minus, vec![101, 4]));

Returns the sign and the u32 digits representation of the BigInt ordered least significant digit first.

Examples
use num_bigint::{BigInt, Sign};

assert_eq!(BigInt::from(-1125).to_u32_digits(), (Sign::Minus, vec![1125]));
assert_eq!(BigInt::from(4294967295u32).to_u32_digits(), (Sign::Plus, vec![4294967295]));
assert_eq!(BigInt::from(4294967296u64).to_u32_digits(), (Sign::Plus, vec![0, 1]));
assert_eq!(BigInt::from(-112500000000i64).to_u32_digits(), (Sign::Minus, vec![830850304, 26]));
assert_eq!(BigInt::from(112500000000i64).to_u32_digits(), (Sign::Plus, vec![830850304, 26]));

Returns the sign and the u64 digits representation of the BigInt ordered least significant digit first.

Examples
use num_bigint::{BigInt, Sign};

assert_eq!(BigInt::from(-1125).to_u64_digits(), (Sign::Minus, vec![1125]));
assert_eq!(BigInt::from(4294967295u32).to_u64_digits(), (Sign::Plus, vec![4294967295]));
assert_eq!(BigInt::from(4294967296u64).to_u64_digits(), (Sign::Plus, vec![4294967296]));
assert_eq!(BigInt::from(-112500000000i64).to_u64_digits(), (Sign::Minus, vec![112500000000]));
assert_eq!(BigInt::from(112500000000i64).to_u64_digits(), (Sign::Plus, vec![112500000000]));
assert_eq!(BigInt::from(1u128 << 64).to_u64_digits(), (Sign::Plus, vec![0, 1]));

Returns an iterator of u32 digits representation of the BigInt ordered least significant digit first.

Examples
use num_bigint::BigInt;

assert_eq!(BigInt::from(-1125).iter_u32_digits().collect::<Vec<u32>>(), vec![1125]);
assert_eq!(BigInt::from(4294967295u32).iter_u32_digits().collect::<Vec<u32>>(), vec![4294967295]);
assert_eq!(BigInt::from(4294967296u64).iter_u32_digits().collect::<Vec<u32>>(), vec![0, 1]);
assert_eq!(BigInt::from(-112500000000i64).iter_u32_digits().collect::<Vec<u32>>(), vec![830850304, 26]);
assert_eq!(BigInt::from(112500000000i64).iter_u32_digits().collect::<Vec<u32>>(), vec![830850304, 26]);

Returns an iterator of u64 digits representation of the BigInt ordered least significant digit first.

Examples
use num_bigint::BigInt;

assert_eq!(BigInt::from(-1125).iter_u64_digits().collect::<Vec<u64>>(), vec![1125u64]);
assert_eq!(BigInt::from(4294967295u32).iter_u64_digits().collect::<Vec<u64>>(), vec![4294967295u64]);
assert_eq!(BigInt::from(4294967296u64).iter_u64_digits().collect::<Vec<u64>>(), vec![4294967296u64]);
assert_eq!(BigInt::from(-112500000000i64).iter_u64_digits().collect::<Vec<u64>>(), vec![112500000000u64]);
assert_eq!(BigInt::from(112500000000i64).iter_u64_digits().collect::<Vec<u64>>(), vec![112500000000u64]);
assert_eq!(BigInt::from(1u128 << 64).iter_u64_digits().collect::<Vec<u64>>(), vec![0, 1]);

Returns the two’s-complement byte representation of the BigInt in big-endian byte order.

Examples
use num_bigint::ToBigInt;

let i = -1125.to_bigint().unwrap();
assert_eq!(i.to_signed_bytes_be(), vec![251, 155]);

Returns the two’s-complement byte representation of the BigInt in little-endian byte order.

Examples
use num_bigint::ToBigInt;

let i = -1125.to_bigint().unwrap();
assert_eq!(i.to_signed_bytes_le(), vec![155, 251]);

Returns the integer formatted as a string in the given radix. radix must be in the range 2...36.

Examples
use num_bigint::BigInt;

let i = BigInt::parse_bytes(b"ff", 16).unwrap();
assert_eq!(i.to_str_radix(16), "ff");

Returns the integer in the requested base in big-endian digit order. The output is not given in a human readable alphabet but as a zero based u8 number. radix must be in the range 2...256.

Examples
use num_bigint::{BigInt, Sign};

assert_eq!(BigInt::from(-0xFFFFi64).to_radix_be(159),
           (Sign::Minus, vec![2, 94, 27]));
// 0xFFFF = 65535 = 2*(159^2) + 94*159 + 27

Returns the integer in the requested base in little-endian digit order. The output is not given in a human readable alphabet but as a zero based u8 number. radix must be in the range 2...256.

Examples
use num_bigint::{BigInt, Sign};

assert_eq!(BigInt::from(-0xFFFFi64).to_radix_le(159),
           (Sign::Minus, vec![27, 94, 2]));
// 0xFFFF = 65535 = 27 + 94*159 + 2*(159^2)

Returns the sign of the BigInt as a Sign.

Examples
use num_bigint::{BigInt, Sign};
use num_traits::Zero;

assert_eq!(BigInt::from(1234).sign(), Sign::Plus);
assert_eq!(BigInt::from(-4321).sign(), Sign::Minus);
assert_eq!(BigInt::zero().sign(), Sign::NoSign);

Returns the magnitude of the BigInt as a BigUint.

Examples
use num_bigint::{BigInt, BigUint};
use num_traits::Zero;

assert_eq!(BigInt::from(1234).magnitude(), &BigUint::from(1234u32));
assert_eq!(BigInt::from(-4321).magnitude(), &BigUint::from(4321u32));
assert!(BigInt::zero().magnitude().is_zero());

Determines the fewest bits necessary to express the BigInt, not including the sign.

Converts this BigInt into a BigUint, if it’s not negative.

Returns self ^ exponent.

Returns (self ^ exponent) mod modulus

Note that this rounds like mod_floor, not like the % operator, which makes a difference when given a negative self or modulus. The result will be in the interval [0, modulus) for modulus > 0, or in the interval (modulus, 0] for modulus < 0

Panics if the exponent is negative or the modulus is zero.

Returns the truncated principal square root of self – see Roots::sqrt.

Returns the truncated principal cube root of self – see Roots::cbrt.

Returns the truncated principal nth root of self – See Roots::nth_root.

Returns the number of least-significant bits that are zero, or None if the entire number is zero.

Returns whether the bit in position bit is set, using the two’s complement for negative numbers

Sets or clears the bit in the given position, using the two’s complement for negative numbers

Note that setting/clearing a bit (for positive/negative numbers, respectively) greater than the current bit length, a reallocation may be needed to store the new digits

Trait Implementations

The associated tag for the type. Read more

The root of this type’s tree of tag’s if it a CHOICE type, otherwise its Leaf that points Self::TAG. Read more

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

Formats the value using the given formatter. Read more

Decode this value implicitly tagged with tag from a given ASN.1 decoder. Read more

Decode this value from a given ASN.1 decoder. Read more

The resulting type after dereferencing.

Dereferences the value.

Mutably dereferences the value.

Encode this value with tag into the given Encoder. Read more

Encodes self’s data into the given Encoder. Read more

Converts to this type from the input type.

Converts to this type from the input type.

Feeds this value into the given Hasher. Read more

Feeds a slice of this type into the given Hasher. Read more

The version of SMI syntax that this type uses.

The abstract syntax for the object type. This must resolve to an instance of the SMI type. Read more

Determines the access level of the object.

The current status of the object.

The object identifier for the object.

Converts self into its SMI data type.

This method returns an Ordering between self and other. Read more

Compares and returns the maximum of two values. Read more

Compares and returns the minimum of two values. Read more

Restrict a value to a certain interval. Read more

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

This method returns an ordering between self and other values if one exists. Read more

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Converts self into T using Into<T>. Read more

Causes self to use its Binary implementation when Debug-formatted. Read more

Causes self to use its Display implementation when Debug-formatted. Read more

Causes self to use its LowerExp implementation when Debug-formatted. Read more

Causes self to use its LowerHex implementation when Debug-formatted. Read more

Causes self to use its Octal implementation when Debug-formatted. Read more

Causes self to use its Pointer implementation when Debug-formatted. Read more

Causes self to use its UpperExp implementation when Debug-formatted. Read more

Causes self to use its UpperHex implementation when Debug-formatted. Read more

Formats each item in a sequence. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Pipes by value. This is generally the method you want to use. Read more

Borrows self and passes that borrow into the pipe function. Read more

Mutably borrows self and passes that borrow into the pipe function. Read more

Borrows self, then passes self.borrow() into the pipe function. Read more

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more

Borrows self, then passes self.as_ref() into the pipe function.

Mutably borrows self, then passes self.as_mut() into the pipe function. Read more

Borrows self, then passes self.deref() into the pipe function.

Mutably borrows self, then passes self.deref_mut() into the pipe function. Read more

Immutable access to a value. Read more

Mutable access to a value. Read more

Immutable access to the Borrow<B> of a value. Read more

Mutable access to the BorrowMut<B> of a value. Read more

Immutable access to the AsRef<R> view of a value. Read more

Mutable access to the AsMut<R> view of a value. Read more

Immutable access to the Deref::Target of a value. Read more

Mutable access to the Deref::Target of a value. Read more

Calls .tap() only in debug builds, and is erased in release builds.

Calls .tap_mut() only in debug builds, and is erased in release builds. Read more

Calls .tap_borrow() only in debug builds, and is erased in release builds. Read more

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds. Read more

Calls .tap_ref() only in debug builds, and is erased in release builds. Read more

Calls .tap_ref_mut() only in debug builds, and is erased in release builds. Read more

Calls .tap_deref() only in debug builds, and is erased in release builds. Read more

Calls .tap_deref_mut() only in debug builds, and is erased in release builds. Read more

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

🔬 This is a nightly-only experimental API. (toowned_clone_into)

Uses borrowed data to replace owned data, usually by cloning. Read more

Attempts to convert self into T using TryInto<T>. Read more

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.