1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
use super::range_wrapper::RangeInclusiveStartWrapper;
use crate::std_ext::*;
use alloc::collections::BTreeMap;
use core::fmt::{self, Debug};
use core::iter::FromIterator;
use core::marker::PhantomData;
use core::ops::RangeInclusive;
use core::prelude::v1::*;

#[cfg(feature = "serde1")]
use serde::{
    de::{Deserialize, Deserializer, SeqAccess, Visitor},
    ser::{Serialize, Serializer},
};

/// A map whose keys are stored as ranges bounded
/// inclusively below and above `(start..=end)`.
///
/// Contiguous and overlapping ranges that map to the same value
/// are coalesced into a single range.
///
/// Successor and predecessor functions must be provided for
/// the key type `K`, so that we can detect adjacent but non-overlapping
/// (closed) ranges. (This is not a problem for half-open ranges,
/// because adjacent ranges can be detected using equality of range ends alone.)
///
/// You can provide these functions either by implementing the
/// [`StepLite`](crate::StepLite) trait for your key type `K`, or,
/// if this is impossible because of Rust's "orphan rules",
/// you can provide equivalent free functions using the `StepFnsT` type parameter.
/// [`StepLite`](crate::StepLite) is implemented for all standard integer types,
/// but not for any third party crate types.
#[derive(Clone)]
pub struct RangeInclusiveMap<K, V, StepFnsT = K> {
    // Wrap ranges so that they are `Ord`.
    // See `range_wrapper.rs` for explanation.
    pub(crate) btm: BTreeMap<RangeInclusiveStartWrapper<K>, V>,
    _phantom: PhantomData<StepFnsT>,
}

impl<K, V> Default for RangeInclusiveMap<K, V, K>
where
    K: Ord + Clone + StepLite,
    V: Eq + Clone,
{
    fn default() -> Self {
        Self::new()
    }
}

impl<K, V> RangeInclusiveMap<K, V, K>
where
    K: Ord + Clone + StepLite,
    V: Eq + Clone,
{
    /// Makes a new empty `RangeInclusiveMap`.
    pub fn new() -> Self {
        Self::new_with_step_fns()
    }
}

impl<K, V, StepFnsT> RangeInclusiveMap<K, V, StepFnsT>
where
    K: Ord + Clone,
    V: Eq + Clone,
    StepFnsT: StepFns<K>,
{
    /// Makes a new empty `RangeInclusiveMap`, specifying successor and
    /// predecessor functions defined separately from `K` itself.
    ///
    /// This is useful as a workaround for Rust's "orphan rules",
    /// which prevent you from implementing `StepLite` for `K` if `K`
    /// is a foreign type.
    ///
    /// **NOTE:** This will likely be deprecated and then eventually
    /// removed once the standard library's [Step](core::iter::Step)
    /// trait is stabilised, as most crates will then likely implement [Step](core::iter::Step)
    /// for their types where appropriate.
    ///
    /// See [this issue](https://github.com/rust-lang/rust/issues/42168)
    /// for details about that stabilization process.
    pub fn new_with_step_fns() -> Self {
        Self {
            btm: BTreeMap::new(),
            _phantom: PhantomData,
        }
    }

    /// Returns a reference to the value corresponding to the given key,
    /// if the key is covered by any range in the map.
    pub fn get(&self, key: &K) -> Option<&V> {
        self.get_key_value(key).map(|(_range, value)| value)
    }

    /// Returns the range-value pair (as a pair of references) corresponding
    /// to the given key, if the key is covered by any range in the map.
    pub fn get_key_value(&self, key: &K) -> Option<(&RangeInclusive<K>, &V)> {
        use core::ops::Bound;

        // The only stored range that could contain the given key is the
        // last stored range whose start is less than or equal to this key.
        let key_as_start = RangeInclusiveStartWrapper::new(key.clone()..=key.clone());
        self.btm
            .range((Bound::Unbounded, Bound::Included(key_as_start)))
            .next_back()
            .filter(|(range_start_wrapper, _value)| {
                // Does the only candidate range contain
                // the requested key?
                range_start_wrapper.range.contains(key)
            })
            .map(|(range_start_wrapper, value)| (&range_start_wrapper.range, value))
    }

    /// Returns `true` if any range in the map covers the specified key.
    pub fn contains_key(&self, key: &K) -> bool {
        self.get(key).is_some()
    }

    /// Gets an iterator over all pairs of key range and value,
    /// ordered by key range.
    ///
    /// The iterator element type is `(&'a RangeInclusive<K>, &'a V)`.
    pub fn iter(&self) -> impl Iterator<Item = (&RangeInclusive<K>, &V)> {
        self.btm.iter().map(|(by_start, v)| (&by_start.range, v))
    }

    /// Insert a pair of key range and value into the map.
    ///
    /// If the inserted range partially or completely overlaps any
    /// existing range in the map, then the existing range (or ranges) will be
    /// partially or completely replaced by the inserted range.
    ///
    /// If the inserted range either overlaps or is immediately adjacent
    /// any existing range _mapping to the same value_, then the ranges
    /// will be coalesced into a single contiguous range.
    ///
    /// # Panics
    ///
    /// Panics if range `start > end`.
    pub fn insert(&mut self, range: RangeInclusive<K>, value: V) {
        use core::ops::Bound;

        // Backwards ranges don't make sense.
        // `RangeInclusive` doesn't enforce this,
        // and we don't want weird explosions further down
        // if someone gives us such a range.
        assert!(
            range.start() <= range.end(),
            "Range start can not be after range end"
        );

        // Wrap up the given range so that we can "borrow"
        // it as a wrapper reference to either its start or end.
        // See `range_wrapper.rs` for explanation of these hacks.
        let mut new_range_start_wrapper: RangeInclusiveStartWrapper<K> =
            RangeInclusiveStartWrapper::new(range);
        let new_value = value;

        // Is there a stored range either overlapping the start of
        // the range to insert or immediately preceding it?
        //
        // If there is any such stored range, it will be the last
        // whose start is less than or equal to _one less than_
        // the start of the range to insert, or the one before that
        // if both of the above cases exist.
        let mut candidates = self
            .btm
            .range((Bound::Unbounded, Bound::Included(&new_range_start_wrapper)))
            .rev()
            .take(2)
            .filter(|(stored_range_start_wrapper, _stored_value)| {
                // Does the candidate range either overlap
                // or immediately precede the range to insert?
                // (Remember that it might actually cover the _whole_
                // range to insert and then some.)
                stored_range_start_wrapper
                    .range
                    .touches::<StepFnsT>(&new_range_start_wrapper.range)
            });
        if let Some(mut candidate) = candidates.next() {
            // Or the one before it if both cases described above exist.
            if let Some(another_candidate) = candidates.next() {
                candidate = another_candidate;
            }
            let (stored_range_start_wrapper, stored_value) =
                (candidate.0.clone(), candidate.1.clone());
            self.adjust_touching_ranges_for_insert(
                stored_range_start_wrapper,
                stored_value,
                &mut new_range_start_wrapper.range,
                &new_value,
            );
        }

        // Are there any stored ranges whose heads overlap or immediately
        // follow the range to insert?
        //
        // If there are any such stored ranges (that weren't already caught above),
        // their starts will fall somewhere after the start of the range to insert,
        // and on, before, or _immediately after_ its end. To handle that last case
        // without risking arithmetic overflow, we'll consider _one more_ stored item past
        // the end of the end of the range to insert.
        //
        // REVISIT: Possible micro-optimisation: `impl Borrow<T> for RangeInclusiveStartWrapper<T>`
        // and use that to search here, to avoid constructing another `RangeInclusiveStartWrapper`.
        let second_last_possible_start = new_range_start_wrapper.range.end().clone();
        let second_last_possible_start = RangeInclusiveStartWrapper::new(
            second_last_possible_start.clone()..=second_last_possible_start,
        );
        while let Some((stored_range_start_wrapper, stored_value)) = self
            .btm
            .range((
                Bound::Included(&new_range_start_wrapper),
                // We would use something like `Bound::Included(&last_possible_start)`,
                // but making `last_possible_start` might cause arithmetic overflow;
                // instead decide inside the loop whether we've gone too far and break.
                Bound::Unbounded,
            ))
            .next()
        {
            // A couple of extra exceptions are needed at the
            // end of the subset of stored ranges we want to consider,
            // in part because we use `Bound::Unbounded` above.
            // (See comments up there, and in the individual cases below.)
            let stored_start = stored_range_start_wrapper.range.start();
            if *stored_start > *second_last_possible_start.range.start() {
                let latest_possible_start =
                    StepFnsT::add_one(second_last_possible_start.range.start());
                if *stored_start > latest_possible_start {
                    // We're beyond the last stored range that could be relevant.
                    // Avoid wasting time on irrelevant ranges, or even worse, looping forever.
                    // (`adjust_touching_ranges_for_insert` below assumes that the given range
                    // is relevant, and behaves very poorly if it is handed a range that it
                    // shouldn't be touching.)
                    break;
                }

                if *stored_start == latest_possible_start && *stored_value != new_value {
                    // We are looking at the last stored range that could be relevant,
                    // but it has a different value, so we don't want to merge with it.
                    // We must explicitly break here as well, because `adjust_touching_ranges_for_insert`
                    // below assumes that the given range is relevant, and behaves very poorly if it
                    // is handed a range that it shouldn't be touching.
                    break;
                }
            }

            let stored_range_start_wrapper = stored_range_start_wrapper.clone();
            let stored_value = stored_value.clone();

            self.adjust_touching_ranges_for_insert(
                stored_range_start_wrapper,
                stored_value,
                &mut new_range_start_wrapper.range,
                &new_value,
            );
        }

        // Insert the (possibly expanded) new range, and we're done!
        self.btm.insert(new_range_start_wrapper, new_value);
    }

    /// Removes a range from the map, if all or any of it was present.
    ///
    /// If the range to be removed _partially_ overlaps any ranges
    /// in the map, then those ranges will be contracted to no
    /// longer cover the removed range.
    ///
    ///
    /// # Panics
    ///
    /// Panics if range `start > end`.
    pub fn remove(&mut self, range: RangeInclusive<K>) {
        use core::ops::Bound;

        // Backwards ranges don't make sense.
        // `RangeInclusive` doesn't enforce this,
        // and we don't want weird explosions further down
        // if someone gives us such a range.
        assert!(
            range.start() <= range.end(),
            "Range start can not be after range end"
        );

        let range_start_wrapper: RangeInclusiveStartWrapper<K> =
            RangeInclusiveStartWrapper::new(range);
        let range = &range_start_wrapper.range;

        // Is there a stored range overlapping the start of
        // the range to insert?
        //
        // If there is any such stored range, it will be the last
        // whose start is less than or equal to the start of the range to insert.
        if let Some((stored_range_start_wrapper, stored_value)) = self
            .btm
            .range((Bound::Unbounded, Bound::Included(&range_start_wrapper)))
            .next_back()
            .filter(|(stored_range_start_wrapper, _stored_value)| {
                // Does the only candidate range overlap
                // the range to insert?
                stored_range_start_wrapper.range.overlaps(&range)
            })
            .map(|(stored_range_start_wrapper, stored_value)| {
                (stored_range_start_wrapper.clone(), stored_value.clone())
            })
        {
            self.adjust_overlapping_ranges_for_remove(
                stored_range_start_wrapper,
                stored_value,
                &range,
            );
        }

        // Are there any stored ranges whose heads overlap the range to insert?
        //
        // If there are any such stored ranges (that weren't already caught above),
        // their starts will fall somewhere after the start of the range to insert,
        // and on or before its end.
        //
        // REVISIT: Possible micro-optimisation: `impl Borrow<T> for RangeInclusiveStartWrapper<T>`
        // and use that to search here, to avoid constructing another `RangeInclusiveStartWrapper`.
        let new_range_end_as_start =
            RangeInclusiveStartWrapper::new(range.end().clone()..=range.end().clone());
        while let Some((stored_range_start_wrapper, stored_value)) = self
            .btm
            .range((
                Bound::Excluded(&range_start_wrapper),
                Bound::Included(&new_range_end_as_start),
            ))
            .next()
            .map(|(stored_range_start_wrapper, stored_value)| {
                (stored_range_start_wrapper.clone(), stored_value.clone())
            })
        {
            self.adjust_overlapping_ranges_for_remove(
                stored_range_start_wrapper,
                stored_value,
                &range,
            );
        }
    }

    fn adjust_touching_ranges_for_insert(
        &mut self,
        stored_range_start_wrapper: RangeInclusiveStartWrapper<K>,
        stored_value: V,
        new_range: &mut RangeInclusive<K>,
        new_value: &V,
    ) {
        use core::cmp::{max, min};

        if stored_value == *new_value {
            // The ranges have the same value, so we can "adopt"
            // the stored range.
            //
            // This means that no matter how big or where the stored range is,
            // we will expand the new range's bounds to subsume it,
            // and then delete the stored range.
            let new_start =
                min(new_range.start(), stored_range_start_wrapper.range.start()).clone();
            let new_end = max(new_range.end(), stored_range_start_wrapper.range.end()).clone();
            *new_range = new_start..=new_end;
            self.btm.remove(&stored_range_start_wrapper);
        } else {
            // The ranges have different values.
            if new_range.overlaps(&stored_range_start_wrapper.range) {
                // The ranges overlap. This is a little bit more complicated.
                // Delete the stored range, and then add back between
                // 0 and 2 subranges at the ends of the range to insert.
                self.btm.remove(&stored_range_start_wrapper);
                if stored_range_start_wrapper.range.start() < new_range.start() {
                    // Insert the piece left of the range to insert.
                    self.btm.insert(
                        RangeInclusiveStartWrapper::new(
                            stored_range_start_wrapper.range.start().clone()
                                ..=StepFnsT::sub_one(new_range.start()),
                        ),
                        stored_value.clone(),
                    );
                }
                if stored_range_start_wrapper.range.end() > new_range.end() {
                    // Insert the piece right of the range to insert.
                    self.btm.insert(
                        RangeInclusiveStartWrapper::new(
                            StepFnsT::add_one(new_range.end())
                                ..=stored_range_start_wrapper.range.end().clone(),
                        ),
                        stored_value,
                    );
                }
            } else {
                // No-op; they're not overlapping,
                // so we can just keep both ranges as they are.
            }
        }
    }

    fn adjust_overlapping_ranges_for_remove(
        &mut self,
        stored_range_start_wrapper: RangeInclusiveStartWrapper<K>,
        stored_value: V,
        range_to_remove: &RangeInclusive<K>,
    ) {
        // Delete the stored range, and then add back between
        // 0 and 2 subranges at the ends of the range to insert.
        self.btm.remove(&stored_range_start_wrapper);
        let stored_range = stored_range_start_wrapper.range;
        if stored_range.start() < range_to_remove.start() {
            // Insert the piece left of the range to insert.
            self.btm.insert(
                RangeInclusiveStartWrapper::new(
                    stored_range.start().clone()..=StepFnsT::sub_one(range_to_remove.start()),
                ),
                stored_value.clone(),
            );
        }
        if stored_range.end() > range_to_remove.end() {
            // Insert the piece right of the range to insert.
            self.btm.insert(
                RangeInclusiveStartWrapper::new(
                    StepFnsT::add_one(range_to_remove.end())..=stored_range.end().clone(),
                ),
                stored_value,
            );
        }
    }

    /// Gets an iterator over all the maximally-sized ranges
    /// contained in `outer_range` that are not covered by
    /// any range stored in the map.
    ///
    /// The iterator element type is `RangeInclusive<K>`.
    ///
    /// NOTE: Calling `gaps` eagerly finds the first gap,
    /// even if the iterator is never consumed.
    pub fn gaps<'a>(&'a self, outer_range: &'a RangeInclusive<K>) -> Gaps<'a, K, V, StepFnsT> {
        let mut keys = self.btm.keys().peekable();

        // Find the first potential gap.
        let mut candidate_start = outer_range.start().clone();
        // We might be already done from the start,
        // but not be able to represent it using
        // `candidate_start` alone if we're at the end
        // of the key domain.
        let mut done = false;
        while let Some(item) = keys.peek() {
            if item.range.end() < outer_range.start() {
                // This range sits entirely before the start of
                // the outer range; just skip it.
                let _ = keys.next();
            } else if item.range.start() <= outer_range.start() {
                // This range overlaps the start of the
                // outer range, so the first possible candidate
                // range begins immediately after its end.
                if item.range.end() >= outer_range.end() {
                    // There's a risk of overflowing;
                    // use our extra "done" flag to represent
                    // that the iterator is already done.
                    // (Don't worry about `candidate_start`
                    // we'll ignore everything else if `done`
                    // is `true`.)
                    done = true;
                } else {
                    candidate_start = StepFnsT::add_one(item.range.end());
                }
                let _ = keys.next();
            } else {
                // The rest of the items might contribute to gaps.
                break;
            }
        }

        Gaps {
            done,
            outer_range,
            keys,
            candidate_start,
            _phantom: PhantomData,
        }
    }
}

pub struct IntoIter<K, V> {
    inner: alloc::collections::btree_map::IntoIter<RangeInclusiveStartWrapper<K>, V>,
}
impl<K, V> IntoIterator for RangeInclusiveMap<K, V> {
    type Item = (RangeInclusive<K>, V);
    type IntoIter = IntoIter<K, V>;
    fn into_iter(self) -> Self::IntoIter {
        IntoIter {
            inner: self.btm.into_iter(),
        }
    }
}
impl<K, V> Iterator for IntoIter<K, V> {
    type Item = (RangeInclusive<K>, V);
    fn next(&mut self) -> Option<(RangeInclusive<K>, V)> {
        self.inner.next().map(|(by_start, v)| (by_start.range, v))
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

// We can't just derive this automatically, because that would
// expose irrelevant (and private) implementation details.
// Instead implement it in the same way that the underlying BTreeMap does.
impl<K: Debug, V: Debug> Debug for RangeInclusiveMap<K, V>
where
    K: Ord + Clone + StepLite,
    V: Eq + Clone,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_map().entries(self.iter()).finish()
    }
}

impl<K, V> FromIterator<(RangeInclusive<K>, V)> for RangeInclusiveMap<K, V>
where
    K: Ord + Clone + StepLite,
    V: Eq + Clone,
{
    fn from_iter<T: IntoIterator<Item = (RangeInclusive<K>, V)>>(iter: T) -> Self {
        let mut range_map = RangeInclusiveMap::new();
        range_map.extend(iter);
        range_map
    }
}

impl<K, V> Extend<(RangeInclusive<K>, V)> for RangeInclusiveMap<K, V>
where
    K: Ord + Clone + StepLite,
    V: Eq + Clone,
{
    fn extend<T: IntoIterator<Item = (RangeInclusive<K>, V)>>(&mut self, iter: T) {
        iter.into_iter().for_each(move |(k, v)| {
            self.insert(k, v);
        })
    }
}

#[cfg(feature = "serde1")]
impl<K, V> Serialize for RangeInclusiveMap<K, V>
where
    K: Ord + Clone + StepLite + Serialize,
    V: Eq + Clone + Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        use serde::ser::SerializeSeq;
        let mut seq = serializer.serialize_seq(Some(self.btm.len()))?;
        for (k, v) in self.iter() {
            seq.serialize_element(&((k.start(), k.end()), &v))?;
        }
        seq.end()
    }
}

#[cfg(feature = "serde1")]
impl<'de, K, V> Deserialize<'de> for RangeInclusiveMap<K, V>
where
    K: Ord + Clone + StepLite + Deserialize<'de>,
    V: Eq + Clone + Deserialize<'de>,
{
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        deserializer.deserialize_seq(RangeInclusiveMapVisitor::new())
    }
}

#[cfg(feature = "serde1")]
struct RangeInclusiveMapVisitor<K, V> {
    marker: PhantomData<fn() -> RangeInclusiveMap<K, V>>,
}

#[cfg(feature = "serde1")]
impl<K, V> RangeInclusiveMapVisitor<K, V> {
    fn new() -> Self {
        RangeInclusiveMapVisitor {
            marker: PhantomData,
        }
    }
}

#[cfg(feature = "serde1")]
impl<'de, K, V> Visitor<'de> for RangeInclusiveMapVisitor<K, V>
where
    K: Ord + Clone + StepLite + Deserialize<'de>,
    V: Eq + Clone + Deserialize<'de>,
{
    type Value = RangeInclusiveMap<K, V>;

    fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        formatter.write_str("RangeInclusiveMap")
    }

    fn visit_seq<A>(self, mut access: A) -> Result<Self::Value, A::Error>
    where
        A: SeqAccess<'de>,
    {
        let mut range_inclusive_map = RangeInclusiveMap::new();
        while let Some(((start, end), value)) = access.next_element()? {
            range_inclusive_map.insert(start..=end, value);
        }
        Ok(range_inclusive_map)
    }
}

pub struct Gaps<'a, K, V, StepFnsT> {
    /// Would be redundant, but we need an extra flag to
    /// avoid overflowing when dealing with inclusive ranges.
    ///
    /// All other things here are ignored if `done` is `true`.
    done: bool,
    outer_range: &'a RangeInclusive<K>,
    keys: core::iter::Peekable<
        alloc::collections::btree_map::Keys<'a, RangeInclusiveStartWrapper<K>, V>,
    >,
    candidate_start: K,
    _phantom: PhantomData<StepFnsT>,
}

// `Gaps` is always fused. (See definition of `next` below.)
impl<'a, K, V, StepFnsT> core::iter::FusedIterator for Gaps<'a, K, V, StepFnsT>
where
    K: Ord + Clone,
    StepFnsT: StepFns<K>,
{
}

impl<'a, K, V, StepFnsT> Iterator for Gaps<'a, K, V, StepFnsT>
where
    K: Ord + Clone,
    StepFnsT: StepFns<K>,
{
    type Item = RangeInclusive<K>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.done || self.candidate_start > *self.outer_range.end() {
            // We've already passed the end of the outer range;
            // there are no more gaps to find.
            return None;
        }

        // Figure out where this gap ends.
        let (end, next_candidate_start) = if let Some(item) = self.keys.next() {
            if item.range.start() <= self.outer_range.end() {
                // The gap goes up until just before the start of the next item,
                // and the next candidate starts after it.
                (
                    StepFnsT::sub_one(item.range.start()),
                    StepFnsT::add_one(item.range.end()),
                )
            } else {
                // The item sits after the end of the outer range,
                // so this gap ends at the end of the outer range.
                // This also means there will be no more gaps.
                self.done = true;
                (
                    self.outer_range.end().clone(),
                    // This value will be ignored.
                    self.candidate_start.clone(),
                )
            }
        } else {
            // There's no next item; the end is at the
            // end of the outer range.
            // This also means there will be no more gaps.
            self.done = true;
            (
                self.outer_range.end().clone(),
                // This value will be ignored.
                self.candidate_start.clone(),
            )
        };

        // Move the next candidate gap start past the end
        // of this gap, and yield the gap we found.
        let gap = self.candidate_start.clone()..=end;
        self.candidate_start = next_candidate_start;
        Some(gap)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use alloc::{format, vec, vec::Vec};

    trait RangeInclusiveMapExt<K, V> {
        fn to_vec(&self) -> Vec<(RangeInclusive<K>, V)>;
    }

    impl<K, V> RangeInclusiveMapExt<K, V> for RangeInclusiveMap<K, V, K>
    where
        K: Ord + Clone + StepLite,
        V: Eq + Clone,
    {
        fn to_vec(&self) -> Vec<(RangeInclusive<K>, V)> {
            self.iter().map(|(kr, v)| (kr.clone(), v.clone())).collect()
        }
    }

    //
    // Insertion tests
    //

    #[test]
    fn empty_map_is_empty() {
        let range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        assert_eq!(range_map.to_vec(), vec![]);
    }

    #[test]
    fn insert_into_empty_map() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        range_map.insert(0..=50, false);
        assert_eq!(range_map.to_vec(), vec![(0..=50, false)]);
    }

    #[test]
    fn new_same_value_immediately_following_stored() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---● ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..=3, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ●---◌ ◌ ◌ ◌
        range_map.insert(4..=6, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---------◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..=6, false)]);
    }

    #[test]
    fn new_different_value_immediately_following_stored() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---● ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..=3, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◆---◇ ◌ ◌ ◌
        range_map.insert(4..=6, true);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---● ◌ ◌ ◌ ◌ ◌ ◌
        // ◌ ◌ ◌ ◌ ◆---◇ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..=3, false), (4..=6, true)]);
    }

    #[test]
    fn new_same_value_overlapping_end_of_stored() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-----● ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..=4, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ●---● ◌ ◌ ◌
        range_map.insert(4..=6, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---------● ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..=6, false)]);
    }

    #[test]
    fn new_different_value_overlapping_end_of_stored() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---● ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..=3, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◆---◆ ◌ ◌ ◌ ◌
        range_map.insert(3..=5, true);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-● ◌ ◌ ◌ ◌ ◌ ◌ ◌
        // ◌ ◌ ◌ ◆---◇ ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..=2, false), (3..=5, true)]);
    }

    #[test]
    fn new_same_value_immediately_preceding_stored() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ●---● ◌ ◌ ◌ ◌
        range_map.insert(3..=5, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-● ◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..=2, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-------● ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..=5, false)]);
    }

    #[test]
    fn new_different_value_immediately_preceding_stored() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◆---◆ ◌ ◌ ◌ ◌
        range_map.insert(3..=5, true);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-● ◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..=2, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-● ◌ ◌ ◌ ◌ ◌ ◌ ◌
        // ◌ ◌ ◌ ◆---◇ ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..=2, false), (3..=5, true)]);
    }

    #[test]
    fn new_same_value_wholly_inside_stored() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-------● ◌ ◌ ◌ ◌
        range_map.insert(1..=5, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ●---● ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(2..=4, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-------● ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..=5, false)]);
    }

    #[test]
    fn new_different_value_wholly_inside_stored() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆-------◆ ◌ ◌ ◌ ◌
        range_map.insert(1..=5, true);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ●---● ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(2..=4, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
        // ◌ ◌ ●---● ◌ ◌ ◌ ◌ ◌
        // ◌ ◌ ◌ ◌ ◌ ◆ ◌ ◌ ◌ ◌
        assert_eq!(
            range_map.to_vec(),
            vec![(1..=1, true), (2..=4, false), (5..=5, true)]
        );
    }

    #[test]
    fn replace_at_end_of_existing_range_should_coalesce() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---● ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..=3, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ●---● ◌ ◌ ◌
        range_map.insert(4..=6, true);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ●---● ◌ ◌ ◌
        range_map.insert(4..=6, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---------● ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..=6, false)]);
    }

    #[test]
    // Test every permutation of a bunch of touching and overlapping ranges.
    fn lots_of_interesting_ranges() {
        use crate::stupid_range_map::StupidU32RangeMap;
        use permutator::Permutation;

        let mut ranges_with_values = [
            (2..=3, false),
            // A duplicate range
            (2..=3, false),
            // Almost a duplicate, but with a different value
            (2..=3, true),
            // A few small ranges, some of them overlapping others,
            // some of them touching others
            (3..=5, true),
            (4..=6, true),
            (6..=7, true),
            // A really big range
            (2..=6, true),
        ];

        ranges_with_values.permutation().for_each(|permutation| {
            let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
            let mut stupid: StupidU32RangeMap<bool> = StupidU32RangeMap::new();

            for (k, v) in permutation {
                // Insert it into both maps.
                range_map.insert(k.clone(), v);
                stupid.insert(k, v);

                // At every step, both maps should contain the same stuff.
                let stupid2: StupidU32RangeMap<bool> = range_map.clone().into();
                assert_eq!(stupid, stupid2);
            }
        });
    }

    //
    // Get* tests
    //

    #[test]
    fn get() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        range_map.insert(0..=50, false);
        assert_eq!(range_map.get(&50), Some(&false));
        assert_eq!(range_map.get(&51), None);
    }

    #[test]
    fn get_key_value() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        range_map.insert(0..=50, false);
        assert_eq!(range_map.get_key_value(&50), Some((&(0..=50), &false)));
        assert_eq!(range_map.get_key_value(&51), None);
    }

    //
    // Removal tests
    //

    #[test]
    fn remove_from_empty_map() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        range_map.remove(0..=50);
        assert_eq!(range_map.to_vec(), vec![]);
    }

    #[test]
    fn remove_non_covered_range_before_stored() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        range_map.insert(25..=75, false);
        range_map.remove(0..=24);
        assert_eq!(range_map.to_vec(), vec![(25..=75, false)]);
    }

    #[test]
    fn remove_non_covered_range_after_stored() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        range_map.insert(25..=75, false);
        range_map.remove(76..=100);
        assert_eq!(range_map.to_vec(), vec![(25..=75, false)]);
    }

    #[test]
    fn remove_overlapping_start_of_stored() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        range_map.insert(25..=75, false);
        range_map.remove(0..=25);
        assert_eq!(range_map.to_vec(), vec![(26..=75, false)]);
    }

    #[test]
    fn remove_middle_of_stored() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        range_map.insert(25..=75, false);
        range_map.remove(30..=70);
        assert_eq!(range_map.to_vec(), vec![(25..=29, false), (71..=75, false)]);
    }

    #[test]
    fn remove_overlapping_end_of_stored() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        range_map.insert(25..=75, false);
        range_map.remove(75..=100);
        assert_eq!(range_map.to_vec(), vec![(25..=74, false)]);
    }

    #[test]
    fn remove_exactly_stored() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        range_map.insert(25..=75, false);
        range_map.remove(25..=75);
        assert_eq!(range_map.to_vec(), vec![]);
    }

    #[test]
    fn remove_superset_of_stored() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        range_map.insert(25..=75, false);
        range_map.remove(0..=100);
        assert_eq!(range_map.to_vec(), vec![]);
    }

    //
    // Test extremes of key ranges; we do addition/subtraction in
    // the range domain so I want to make sure I haven't accidentally
    // introduced some arithmetic overflow there.
    //

    #[test]
    fn no_overflow_at_key_domain_extremes() {
        let mut range_map: RangeInclusiveMap<u8, bool> = RangeInclusiveMap::new();
        range_map.insert(0..=255, false);
        range_map.insert(0..=10, true);
        range_map.insert(245..=255, true);
        range_map.remove(0..=5);
        range_map.remove(0..=5);
        range_map.remove(250..=255);
        range_map.remove(250..=255);
        range_map.insert(0..=255, true);
        range_map.remove(1..=254);
        range_map.insert(254..=254, true);
        range_map.insert(255..=255, true);
        range_map.insert(255..=255, false);
        range_map.insert(0..=0, false);
        range_map.insert(1..=1, true);
        range_map.insert(0..=0, true);
    }

    // Gaps tests

    #[test]
    fn whole_range_is_a_gap() {
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
        let range_map: RangeInclusiveMap<u32, ()> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆-------------◆ ◌
        let outer_range = 1..=8;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield the entire outer range.
        assert_eq!(gaps.next(), Some(1..=8));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn whole_range_is_covered_exactly() {
        let mut range_map: RangeInclusiveMap<u32, ()> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---------● ◌ ◌ ◌
        range_map.insert(1..=6, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆---------◆ ◌ ◌ ◌
        let outer_range = 1..=6;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield no gaps.
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn item_before_outer_range() {
        let mut range_map: RangeInclusiveMap<u32, ()> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---● ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..=3, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◆-----◆ ◌
        let outer_range = 5..=8;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield the entire outer range.
        assert_eq!(gaps.next(), Some(5..=8));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn item_touching_start_of_outer_range() {
        let mut range_map: RangeInclusiveMap<u32, ()> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-----● ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..=4, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◆-----◆ ◌
        let outer_range = 5..=8;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield the entire outer range.
        assert_eq!(gaps.next(), Some(5..=8));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn item_overlapping_start_of_outer_range() {
        let mut range_map: RangeInclusiveMap<u32, ()> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-------● ◌ ◌ ◌ ◌
        range_map.insert(1..=5, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◆-----◆ ◌
        let outer_range = 5..=8;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield from just past the end of the stored item
        // to the end of the outer range.
        assert_eq!(gaps.next(), Some(6..=8));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn item_starting_at_start_of_outer_range() {
        let mut range_map: RangeInclusiveMap<u32, ()> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ●-● ◌ ◌ ◌
        range_map.insert(5..=6, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◆-----◆ ◌
        let outer_range = 5..=8;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield from just past the item onwards.
        assert_eq!(gaps.next(), Some(7..=8));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn items_floating_inside_outer_range() {
        let mut range_map: RangeInclusiveMap<u32, ()> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◌ ●-● ◌ ◌
        range_map.insert(6..=7, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ●-● ◌ ◌ ◌ ◌ ◌
        range_map.insert(3..=4, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆-------------◆ ◌
        let outer_range = 1..=8;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield gaps at start, between items,
        // and at end.
        assert_eq!(gaps.next(), Some(1..=2));
        assert_eq!(gaps.next(), Some(5..=5));
        assert_eq!(gaps.next(), Some(8..=8));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn item_ending_at_end_of_outer_range() {
        let mut range_map: RangeInclusiveMap<u32, ()> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◌ ◌ ●-● ◌
        range_map.insert(7..=8, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◆-----◆ ◌
        let outer_range = 5..=8;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield from the start of the outer range
        // up to just before the start of the stored item.
        assert_eq!(gaps.next(), Some(5..=6));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn item_overlapping_end_of_outer_range() {
        let mut range_map: RangeInclusiveMap<u32, ()> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ●---● ◌ ◌
        range_map.insert(5..=6, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◆-----◆ ◌ ◌ ◌ ◌
        let outer_range = 2..=5;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield from the start of the outer range
        // up to the start of the stored item.
        assert_eq!(gaps.next(), Some(2..=4));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn item_touching_end_of_outer_range() {
        let mut range_map: RangeInclusiveMap<u32, ()> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ●-----● ◌
        range_map.insert(5..=9, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆-----◆ ◌ ◌ ◌ ◌ ◌
        let outer_range = 1..=4;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield the entire outer range.
        assert_eq!(gaps.next(), Some(1..=4));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn item_after_outer_range() {
        let mut range_map: RangeInclusiveMap<u32, ()> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◌ ●---● ◌
        range_map.insert(6..=7, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆-----◆ ◌ ◌ ◌ ◌ ◌
        let outer_range = 1..=4;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield the entire outer range.
        assert_eq!(gaps.next(), Some(1..=4));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn zero_width_outer_range_with_items_away_from_both_sides() {
        let mut range_map: RangeInclusiveMap<u32, ()> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆---◆ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..=3, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◆---◆ ◌ ◌
        range_map.insert(5..=7, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◆ ◌ ◌ ◌ ◌ ◌
        let outer_range = 4..=4;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield a zero-width gap.
        assert_eq!(gaps.next(), Some(4..=4));
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn zero_width_outer_range_with_items_touching_both_sides() {
        let mut range_map: RangeInclusiveMap<u32, ()> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◆-◆ ◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(2..=3, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◆---◆ ◌ ◌ ◌
        range_map.insert(5..=6, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◆ ◌ ◌ ◌ ◌ ◌
        let outer_range = 4..=4;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield no gaps.
        assert_eq!(gaps.next(), Some(4..=4));
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn empty_outer_range_with_item_straddling() {
        let mut range_map: RangeInclusiveMap<u32, ()> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◆-----◆ ◌ ◌ ◌ ◌ ◌
        range_map.insert(2..=5, ());
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◆ ◌ ◌ ◌ ◌ ◌
        let outer_range = 4..=4;
        let mut gaps = range_map.gaps(&outer_range);
        // Should yield no gaps.
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn no_overflow_finding_gaps_at_key_domain_extremes() {
        // Items and outer range both at extremes.
        let mut range_map: RangeInclusiveMap<u8, bool> = RangeInclusiveMap::new();
        range_map.insert(0..=255, false);
        range_map.gaps(&(0..=255));

        // Items at extremes with gaps in middle.
        let mut range_map: RangeInclusiveMap<u8, bool> = RangeInclusiveMap::new();
        range_map.insert(0..=255, false);
        range_map.gaps(&(0..=5));
        range_map.gaps(&(250..=255));

        // Items just in from extremes.
        let mut range_map: RangeInclusiveMap<u8, bool> = RangeInclusiveMap::new();
        range_map.insert(0..=255, false);
        range_map.gaps(&(1..=5));
        range_map.gaps(&(250..=254));

        // Outer range just in from extremes,
        // items at extremes.
        let mut range_map: RangeInclusiveMap<u8, bool> = RangeInclusiveMap::new();
        range_map.insert(1..=254, false);
        range_map.gaps(&(0..=5));
        range_map.gaps(&(250..=255));
    }

    ///
    /// impl Debug
    ///

    #[test]
    fn map_debug_repr_looks_right() {
        let mut map: RangeInclusiveMap<u32, ()> = RangeInclusiveMap::new();

        // Empty
        assert_eq!(format!("{:?}", map), "{}");

        // One entry
        map.insert(2..=5, ());
        assert_eq!(format!("{:?}", map), "{2..=5: ()}");

        // Many entries
        map.insert(7..=8, ());
        map.insert(10..=11, ());
        assert_eq!(format!("{:?}", map), "{2..=5: (), 7..=8: (), 10..=11: ()}");
    }

    // impl Serialize

    #[cfg(feature = "serde1")]
    #[test]
    fn serialization() {
        let mut range_map: RangeInclusiveMap<u32, bool> = RangeInclusiveMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆---◆ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..=3, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◆---◆ ◌ ◌
        range_map.insert(5..=7, true);
        let output = serde_json::to_string(&range_map).expect("Failed to serialize");
        assert_eq!(output, "[[[1,3],false],[[5,7],true]]");
    }

    // impl Deserialize

    #[cfg(feature = "serde1")]
    #[test]
    fn deserialization() {
        let input = "[[[1,3],false],[[5,7],true]]";
        let range_map: RangeInclusiveMap<u32, bool> =
            serde_json::from_str(input).expect("Failed to deserialize");
        let reserialized = serde_json::to_string(&range_map).expect("Failed to re-serialize");
        assert_eq!(reserialized, input);
    }
}