1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#[cfg(test)]
mod tests;

use std::clone::Clone;
use step::Step;
use element::Element;
use element::Element::*;

/// A set that stores values in contiguous ranges
///
/// `RangedSet` stores numeric values (or values that implement the
/// [`Step`] trait) in ranges to conserve space.
///
/// # When is using `RangedSet` a good idea?
///
/// `RangedSet` should be used when you need to store a lot of values
/// that are contiguous. The example given in the module stored values
/// whose Collatz sequence converged. It iterated from 1 up to
/// `u64::MAX` and stored values it that converged in a cache. Most of
/// these numbers are contiguous. Definitely all the values below the
/// current number do.
///
/// # Example
///
/// ```rust
/// use ranged_set::RangedSet;
///
/// let mut rs = RangedSet::new();
///
/// for i in 0..65_535 {
///     rs.insert(i);
/// }
///
/// // There's no way to check here in the code, but the memory consumed
/// // here should be enough for a Vec<i32>, an enum discriminant, and
/// // two i32's.
/// ```
///
/// [`Step`]: https://docs.rs/step/0.1.0/step/
pub struct RangedSet<T: Step + Clone + Ord> {
    ranges: Vec<Element<T>>,
}

impl<T: Step + Clone + Ord> RangedSet<T> {
    /// Returns a new empty set
    ///
    /// # Example
    ///
    /// ```rust
    /// use ranged_set::RangedSet;
    /// let mut set: RangedSet<i32> = RangedSet::new();
    /// ```
    pub fn new() -> RangedSet<T> {
        RangedSet {
            ranges: Vec::new(),
        }
    }

    /// Returns `true` if the set contains a value.
    ///
    /// # Example
    ///
    /// ```rust
    /// use ranged_set::RangedSet;
    ///
    /// let mut set = RangedSet::new();
    /// set.insert(0);
    /// set.insert(1);
    /// set.insert(2);
    ///
    /// assert_eq!(set.contains(&0), true);
    /// assert_eq!(set.contains(&3), false);
    /// ```
    pub fn contains(&self, value: &T) -> bool {
        match self.find_index_for(value) {
            Ok(_) => true,
            Err(_) => false,
        }
    }

    /// Adds a value to the set
    ///
    /// If the set did not have this value present, `true` is returned.
    /// If the set did have this value present, `false` is returned.
    ///
    /// # Example
    ///
    /// ```rust
    /// use ranged_set::RangedSet;
    ///
    /// let mut set = RangedSet::new();
    /// assert_eq!(set.insert(1), true);
    /// assert_eq!(set.insert(1), false);
    /// ```
    pub fn insert(&mut self, value: T) -> bool {
        enum Operation<T> {
            InsertSingle(usize, T),
            TwoWayMerge(usize, T),
            ThreeWayMerge(usize, usize, T),
            NoOp,
        }

        let operation = {
            let slot = self.find_index_for(&value);
            match slot {
                // The value is already contained in the element at the
                // index returned in the Ok() value, so nothing needs
                // doing.
                Ok(_) => Operation::NoOp,

                // The value wasn't found, so the index contained in the
                // Err() value is where to insert it to maintain sort
                // order. The value needs to be added to the list of
                // elements, either as a single value or by merging with
                // another element.
                Err(index) => {
                    let before = index.checked_sub(1).and_then(|i| self.ranges.get(i));
                    let after = self.ranges.get(index);
                    match (before, after) {
                        (None, None) => Operation::InsertSingle(index, value),
                        (Some(b), None) if !b.adjacent_to(&value) => Operation::InsertSingle(index, value),
                        (None, Some(a)) if !a.adjacent_to(&value) => Operation::InsertSingle(index, value),
                        (Some(b), None) if b.adjacent_to(&value) => Operation::TwoWayMerge(index - 1, value),
                        (None, Some(a)) if a.adjacent_to(&value) => Operation::TwoWayMerge(index, value),
                        (Some(b), Some(a)) if !b.adjacent_to(&value) && !a.adjacent_to(&value) => Operation::InsertSingle(index, value),
                        (Some(b), Some(a)) if b.adjacent_to(&value) && !a.adjacent_to(&value) => Operation::TwoWayMerge(index - 1, value),
                        (Some(b), Some(a)) if !b.adjacent_to(&value) && a.adjacent_to(&value) => Operation::TwoWayMerge(index, value),
                        (Some(b), Some(a)) if b.adjacent_to(&value) && a.adjacent_to(&value) => Operation::ThreeWayMerge(index - 1, index, value),
                        _ => unimplemented!(),
                    }
                }
            }
        };

        match operation {
            Operation::NoOp => false,
            Operation::InsertSingle(index, value) => {
                self.ranges.insert(index, Single(value));
                true
            }
            Operation::TwoWayMerge(index, value) => {
                let existing = self.ranges[index].clone();
                let merged = existing.merge(value);

                self.ranges.push(merged);
                let _ = self.ranges.swap_remove(index);
                true
            }
            Operation::ThreeWayMerge(index_before, index_after, value) => {
                let before = self.ranges[index_before].clone();
                let after = self.ranges[index_after].clone();
                let merged_before = before.merge(value);
                let merged = merged_before.merge(after);

                self.ranges.push(merged);
                let _ = self.ranges.swap_remove(index_before);
                let _ = self.ranges.remove(index_after);
                true
            }
        }
    }

    /// Removes and returns a value from the set
    ///
    /// # Example
    ///
    /// ```rust
    /// use ranged_set::RangedSet;
    ///
    /// let mut set = RangedSet::new();
    /// set.insert(0);
    /// set.insert(1);
    /// set.insert(2);
    ///
    /// assert_eq!(set.take(&0), Some(0));
    /// assert_eq!(set.take(&5), None);
    /// ```
    pub fn take(&mut self, value: &T) -> Option<T> {
        enum Operation<T> {
            Remove(usize),
            Split(usize, T),
            NoOp,
        }

        let operation = {
            let slot = self.find_index_for(value);
            match slot {
                Err(_) => Operation::NoOp,
                Ok(index) => match self.ranges[index] {
                    Element::Single(_) => Operation::Remove(index),
                    Element::Range(_) => Operation::Split(index, value.clone()),
                }
            }
        };

        match operation {
            Operation::NoOp => None,
            Operation::Remove(index) => match self.ranges.remove(index) {
                Element::Single(v) => Some(v),
                _ => unreachable!(),
            },
            Operation::Split(index, value) => match self.ranges[index].clone() {
                e @ Element::Range(_) => {
                    let (b, v, a) = e.split(&value);
                    match (b, a) {
                        (Some(b), Some(a)) => {
                            self.ranges.push(a);
                            let _ = self.ranges.swap_remove(index);
                            self.ranges.insert(index, b);
                        }
                        (None, Some(a)) => {
                            self.ranges.push(a);
                            let _ = self.ranges.swap_remove(index);
                        }
                        (Some(b), None) => {
                            self.ranges.push(b);
                            let _ = self.ranges.swap_remove(index);
                        }
                        (None, None) => unreachable!(),
                    }

                    Some(v)
                }
                _ => unreachable!(),
            }
        }
    }

    /// Removes a value from the set
    ///
    /// Removes a value from the set. Returns `true` if the value was
    /// present in the set.
    ///
    /// # Example
    ///
    /// ```rust
    /// use ranged_set::RangedSet;
    ///
    /// let mut set = RangedSet::new();
    /// set.insert(0);
    /// set.insert(1);
    /// set.insert(2);
    ///
    /// assert_eq!(set.remove(&0), true);
    /// assert_eq!(set.remove(&5), false);
    /// ```
    pub fn remove(&mut self, value: &T) -> bool {
        match self.take(value) {
            Some(_) => true,
            None => false,
        }
    }

    fn find_index_for(&self, value: &T) -> Result<usize, usize> {
        use std::cmp::Ordering;

        self.ranges.binary_search_by(|member| {
            match (member, value) {
                (&Single(ref s), v) => s.cmp(v),
                (&Range(ref r), v) => {
                    if r.end < *v {
                        Ordering::Less
                    } else if *v < r.start {
                        Ordering::Greater
                    } else {
                        Ordering::Equal
                    }
                }
            }
        })
    }
}