1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
use crate::alloc::string::ToString;
use crate::merge_map::KMergeMap;
use crate::sorted_disjoint_map::{Priority, PrioritySortedStartsMap};
use crate::{BitOrMapKMerge, BitOrMapMerge, MergeMap, SortedDisjointMap};
use alloc::format;
use alloc::string::String;
use alloc::{collections::BinaryHeap, vec};
use core::cmp::min;
use core::iter::FusedIterator;
use core::ops::RangeInclusive;
use itertools::Itertools;
use crate::unsorted_disjoint_map::UnsortedPriorityDisjointMap;
use crate::{map::ValueOwned, Integer};
use crate::{
map::{CloneBorrow, SortedStartsInVecMap},
unsorted_disjoint_map::AssumePrioritySortedStartsMap,
};
/// Turns any number of [`SortedDisjointMap`] iterators into a [`SortedDisjointMap`] iterator of their union,
/// i.e., all the integers in any input iterator, as sorted & disjoint ranges. Uses [`Merge`]
/// or [`KMerge`].
///
/// [`SortedDisjointMap`]: crate::SortedDisjointMap
/// [`Merge`]: crate::Merge
/// [`KMerge`]: crate::KMerge
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
/// use range_set_blaze::{UnionIterMap, Merge, SortedDisjointMap, CheckSortedDisjoint};
///
/// let a = CheckSortedDisjoint::new([1..=2, 5..=100].into_iter());
/// let b = CheckSortedDisjoint::from([2..=6]);
/// let union = UnionIterMap::new2(a, b);
/// assert_eq!(union.into_string(), "1..=100");
///
/// // Or, equivalently:
/// let a = CheckSortedDisjoint::new([1..=2, 5..=100].into_iter());
/// let b = CheckSortedDisjoint::from([2..=6]);
/// let union = a | b;
/// assert_eq!(union.into_string(), "1..=100")
/// ```
// cmk #[derive(Clone, Debug)]
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct UnionIterMap<T, V, VR, SS>
where
T: Integer,
V: ValueOwned,
VR: CloneBorrow<V>,
SS: PrioritySortedStartsMap<T, V, VR>,
{
iter: SS,
next_item: Option<Priority<T, V, VR>>,
workspace: BinaryHeap<Priority<T, V, VR>>,
gather: Option<(RangeInclusive<T>, VR)>,
ready_to_go: Option<(RangeInclusive<T>, VR)>,
}
impl<T, V, VR, I> Iterator for UnionIterMap<T, V, VR, I>
where
T: Integer,
V: ValueOwned,
VR: CloneBorrow<V>,
I: PrioritySortedStartsMap<T, V, VR>,
{
type Item = (RangeInclusive<T>, VR);
fn next(&mut self) -> Option<(RangeInclusive<T>, VR)> {
// Keep doing this until we have something to return.
loop {
if let Some(value) = self.ready_to_go.take() {
// If ready_to_go is Some, return the value immediately.
// println!("cmk output1 range {:?}", value.0);
return Some(value);
};
// if self.next_item should go into the workspace, then put it there, get the next, next_item, and loop
if let Some(next_item) = self.next_item.take() {
let (next_start, next_end) = next_item.start_and_end();
// If workspace is empty, just push the next item
let Some(best) = self.workspace.peek() else {
// println!(
// "cmk pushing self.next_item {:?} into empty workspace",
// next_item.0
// );
self.workspace.push(next_item);
self.next_item = self.iter.next();
// println!(
// "cmk reading new self.next_item via .next() {:?}",
// cmk_debug_string(&self.next_item)
// );
// println!("cmk return to top of the main processing loop");
continue; // return to top of the main processing loop
};
// LATER: Could add this special case: If next value is the same as best value and the ending is later, and the start overlaps/touches, then just extend the best value.
if next_start == best.start() {
// Only push if the priority is better or the end is greater
if &next_item > best || next_end > best.end() {
// println!("cmk pushing next_item {:?} into workspace", next_item.0);
self.workspace.push(next_item);
} else {
// println!(
// "cmk throwing away next_item {:?} because of priority and length",
// next_item.0
// );
}
self.next_item = self.iter.next();
// println!(
// "cmk .next() self.next_item {:?}",
// cmk_debug_string(&self.next_item)
// );
// println!("cmk return to top of the main processing loop");
continue; // return to top of the main processing loop
}
// It does not go into the workspace, so just hold it and keep processing.
// println!(
// "cmk new start, so hold self.next_item {:?} for later",
// next_item.0
// );
self.next_item = Some(next_item);
}
// If the workspace is empty, we are done.
let Some(best) = self.workspace.peek() else {
debug_assert!(self.next_item.is_none());
debug_assert!(self.ready_to_go.is_none());
let value = self.gather.take();
// println!("cmk output2 range {:?}", cmk_debug_string(&value));
return value;
};
// We buffer for output the best item up to the start of the next item (if any).
// Find the start of the next item, if any.
let next_end = if let Some(next_item) = self.next_item.as_ref() {
// println!(
// "cmk start-less1 {:?} {:?}",
// next_item.0.start(),
// best.0.end()
// );
min(next_item.start() - T::one(), best.end())
// println!("cmk min {:?}", m);
} else {
best.end()
};
// Add the front of best to the gather buffer.
if let Some(mut gather) = self.gather.take() {
if gather.1.borrow() == best.value().borrow()
&& *gather.0.end() + T::one() == best.start()
{
// if the gather is contiguous with the best, then merge them
gather.0 = *gather.0.start()..=next_end;
// println!(
// "cmk merge gather {:?} best {:?} as {:?} -> {:?}",
// gather.0,
// best.0,
// *best.0.start()..=next_end,
// gather.0
// );
self.gather = Some(gather);
} else {
// if the gather is not contiguous with the best, then output the gather and set the gather to the best
// println!(
// "cmk new ready-to-go {:?}, new gather front of best {:?} as {:?}",
// gather.0,
// best.0,
// *best.0.start()..=next_end
// );
self.ready_to_go = Some(gather);
self.gather = Some((best.start()..=next_end, best.value().clone_borrow()));
}
} else {
// if there is no gather, then set the gather to the best
// println!(
// "cmk no gather, capture front of best {:?} as {:?}",
// best.0,
// *best.0.start()..=next_end
// );
self.gather = Some((best.start()..=next_end, best.value().clone_borrow()))
};
// We also update the workspace to removing any items that are completely covered by the new_start.
// We also don't need to keep any items that have a lower priority and are shorter than the new best.
let mut new_workspace = BinaryHeap::new();
while let Some(item) = self.workspace.pop() {
let mut item = item;
if item.end() <= next_end {
// too short, don't keep
// println!("cmk too short, don't keep in workspace {:?}", item.0);
continue; // while loop
}
item.set_range(next_end + T::one()..=item.end());
let Some(new_best) = new_workspace.peek() else {
// println!("cmk no workspace, so keep {:?}", item.0);
// new_workspace is empty, so keep
new_workspace.push(item);
continue; // while loop
};
if &item < new_best && item.end() <= new_best.end() {
// println!("cmk item is lower priority {:?} and shorter {:?} than best item {:?},{:?} in new workspace, so don't keep",
// item.priority, item.0, new_best.priority, new_best.0);
// not as good as new_best, and shorter, so don't keep
continue; // while loop
}
// higher priority or longer, so keep
// println!("cmk item is higher priority {:?} or longer {:?} than best item {:?},{:?} in new workspace, so keep",
// item.priority, item.0, new_best.priority, new_best.0);
new_workspace.push(item);
}
self.workspace = new_workspace;
} // end of main loop
}
}
#[allow(dead_code)]
fn cmk_debug_string<'a, T, V, VR>(item: &Option<(RangeInclusive<T>, VR)>) -> String
where
T: Integer,
V: ValueOwned,
VR: CloneBorrow<V> + 'a,
{
if let Some(item) = item {
format!("Some({:?})", item.0)
} else {
"None".to_string()
}
}
impl<T, V, VR, I> UnionIterMap<T, V, VR, I>
where
T: Integer,
V: ValueOwned,
VR: CloneBorrow<V>,
I: PrioritySortedStartsMap<T, V, VR>,
{
// cmk fix the comment on the set size. It should say inputs are SortedStarts not SortedDisjoint.
/// Creates a new [`UnionIterMap`] from zero or more [`SortedStartsMap`] iterators. See [`UnionIterMap`] for more details and examples.
pub fn new(mut iter: I) -> Self {
let item = iter.next();
Self {
iter,
next_item: item,
workspace: BinaryHeap::new(),
gather: None,
ready_to_go: None,
}
}
}
impl<T, V, VR, L, R> BitOrMapMerge<T, V, VR, L, R>
where
T: Integer,
V: ValueOwned,
VR: CloneBorrow<V>,
L: SortedDisjointMap<T, V, VR>,
R: SortedDisjointMap<T, V, VR>,
{
// cmk fix the comment on the set size. It should say inputs are SortedStarts not SortedDisjoint.
/// Creates a new [`SymDiffIterMap`] from zero or more [`SortedDisjointMap`] iterators. See [`SymDiffIterMap`] for more details and examples.
pub fn new2(left: L, right: R) -> Self {
let iter = MergeMap::new(left, right);
Self::new(iter)
}
}
/// cmk doc
impl<T, V, VR, J> BitOrMapKMerge<T, V, VR, J>
where
T: Integer,
V: ValueOwned,
VR: CloneBorrow<V>,
J: SortedDisjointMap<T, V, VR>,
{
// cmk fix the comment on the set size. It should say inputs are SortedStarts not SortedDisjoint.
/// Creates a new [`SymDiffIterMap`] from zero or more [`SortedDisjointMap`] iterators. See [`SymDiffIterMap`] for more details and examples.
pub fn new_k<K>(k: K) -> Self
where
K: IntoIterator<Item = J>,
{
let iter = KMergeMap::new(k);
Self::new(iter)
}
}
// from iter (T, &V) to UnionIterMap
impl<'a, T, V> FromIterator<(T, &'a V)>
for UnionIterMap<T, V, &'a V, SortedStartsInVecMap<T, V, &'a V>>
where
T: Integer + 'a,
V: ValueOwned + 'a,
{
fn from_iter<I>(iter: I) -> Self
where
I: IntoIterator<Item = (T, &'a V)>,
{
let iter = iter.into_iter().map(|(x, value)| (x..=x, value));
UnionIterMap::from_iter(iter)
}
}
// // from iter (RangeInclusive<T>, &V) to UnionIterMap
// impl<'a, T: Integer + 'a, V: ValueOwned + 'a> FromIterator<(RangeInclusive<T>, &'a V)>
// for UnionIterMap<T, V, &'a V, SortedStartsInVecMap<T, V, &'a V>>
// {
// fn from_iter<I>(iter: I) -> Self
// where
// I: IntoIterator<Item = (RangeInclusive<T>, &'a V)>,
// {
// let iter = iter.into_iter();
// let iter = iter.map(|(range, value)| (range, value));
// UnionIterMap::from_iter(iter)
// }
// }
// cmk used?
#[allow(dead_code)]
type SortedRangeValueVec<T, V, VR> =
AssumePrioritySortedStartsMap<T, V, VR, vec::IntoIter<(RangeInclusive<T>, VR)>>;
// cmk simplify the long types
// from iter (T, VR) to UnionIterMap
impl<T, V, VR> FromIterator<(RangeInclusive<T>, VR)>
for UnionIterMap<T, V, VR, SortedStartsInVecMap<T, V, VR>>
where
T: Integer,
V: ValueOwned,
VR: CloneBorrow<V>,
{
fn from_iter<I>(iter: I) -> Self
where
I: IntoIterator<Item = (RangeInclusive<T>, VR)>,
{
let iter = iter.into_iter();
// let iter = iter.map(|x| {
// println!("cmk x.priority {:?}", x.priority);
// x
// });
let iter = UnsortedPriorityDisjointMap::new(iter);
UnionIterMap::from(iter)
}
}
// from from UnsortedDisjointMap to UnionIterMap
impl<T, V, VR, I> From<UnsortedPriorityDisjointMap<T, V, VR, I>>
for UnionIterMap<T, V, VR, SortedStartsInVecMap<T, V, VR>>
where
T: Integer,
V: ValueOwned,
VR: CloneBorrow<V>,
I: Iterator<Item = (RangeInclusive<T>, VR)>,
{
#[allow(clippy::clone_on_copy)]
fn from(unsorted_disjoint: UnsortedPriorityDisjointMap<T, V, VR, I>) -> Self {
let iter = unsorted_disjoint.sorted_by(|a, b| {
// We sort only by start -- priority is not used until later.
a.start().cmp(&b.start())
});
let iter = AssumePrioritySortedStartsMap::new(iter);
Self::new(iter)
}
}
// cmk0 test that every iterator (that can be) is FusedIterator
impl<T, V, VR, I> FusedIterator for UnionIterMap<T, V, VR, I>
where
T: Integer,
V: ValueOwned,
VR: CloneBorrow<V>,
I: PrioritySortedStartsMap<T, V, VR> + FusedIterator,
{
}
// cmk
// impl<'a, T, V, VR, I> ops::Not for UnionIterMap<'a, T, V, VR, I>
// where
// I: SortedStartsMap<T, V>,
// {
// type Output = NotIterMap<T, V, Self>;
// fn not(self) -> Self::Output {
// self.complement()
// }
// }
// impl<'a, T, V, VR, R, L> ops::BitOr<R> for UnionIterMap<'a, T, V, VR, L>
// where
// T: Integer + 'a,
// V: ValueOwned + 'a,
// VR: CloneBorrow<V> + 'a,
// L: SortedStartsMap<'a, T, V, VR>,
// R: SortedDisjointMap<'a, T, V, VR> + 'a,
// {
// type Output = BitOrMergeMap<'a, T, V, VR, Self, R>;
// fn bitor(self, rhs: R) -> Self::Output {
// // It might be fine to optimize to self.iter, but that would require
// // also considering field 'range'
// SortedDisjointMap::union(self, rhs)
// }
// }
// impl<'a, T, V, VR, R, L> ops::Sub<R> for UnionIterMap<'a, T, V, VR, L>
// where
// L: SortedStartsMap<T, V>,
// R: SortedDisjointMap<T, V>,
// {
// type Output = BitSubMergeMap<T, V, Self, R>;
// fn sub(self, rhs: R) -> Self::Output {
// SortedDisjointMap::difference(self, rhs)
// }
// }
// impl<'a, T, V, VR, R, L> ops::BitXor<R> for UnionIterMap<'a, T, V, VR, L>
// where
// L: SortedStartsMap<T, V>,
// R: SortedDisjointMap<T, V>,
// {
// type Output = BitXOrTeeMap<T, V, Self, R>;
// #[allow(clippy::suspicious_arithmetic_impl)]
// fn bitxor(self, rhs: R) -> Self::Output {
// SortedDisjointMap::symmetric_difference(self, rhs)
// }
// }
// impl<'a, T, V, VR, R, L> ops::BitAnd<R> for UnionIterMap<'a, T, V, VR, L>
// where
// L: SortedStartsMap<T, V>,
// R: SortedDisjointMap<T, V>,
// {
// type Output = BitAndMergeMap<T, V, Self, R>;
// fn bitand(self, other: R) -> Self::Output {
// SortedDisjointMap::intersection(self, other)
// }
// }
// impl<'a, T: Integer + 'a, V: ValueOwned + 'a, const N: usize> From<[(T, V); N]>
// for UnionIterMap<'a, T, V, &'a V, SortedStartsInVecMap<'a, T, V, &'a V>>
// {
// fn from(arr: [(T, &'a V); N]) -> Self {
// // Directly create an iterator from the array and map it as needed
// arr.iter()
// .map(|&(t, v)| (t, v)) // This is a simple identity map; adjust as needed for your actual transformation
// .collect() // Collect into UnionIterMap, relying on FromIterator
// }
// }