1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
use crate::{
merge::KMerge, BitXorKMerge, BitXorMerge, Integer, Merge, SortedDisjoint, SortedStarts,
};
use alloc::collections::BinaryHeap;
use core::{cmp::Reverse, iter::FusedIterator, ops::RangeInclusive};
/// Turns any number of [`SortedDisjointMap`] iterators into a [`SortedDisjointMap`] iterator of their union,
/// i.e., all the integers in any input iterator, as sorted & disjoint ranges. Uses [`Merge`]
/// or [`KMerge`].
///
/// [`SortedDisjointMap`]: crate::SortedDisjointMap
/// [`Merge`]: crate::Merge
/// [`KMerge`]: crate::KMerge
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
/// use range_set_blaze::{SymDiffIter, Merge, SortedDisjointMap, CheckSortedDisjoint};
///
/// let a = CheckSortedDisjoint::new([1..=2, 5..=100].into_iter());
/// let b = CheckSortedDisjoint::from([2..=6]);
/// let union = SymDiffIter::new(Merge::new(a, b));
/// assert_eq!(union.into_string(), "1..=100");
///
/// // Or, equivalently:
/// let a = CheckSortedDisjoint::new([1..=2, 5..=100].into_iter());
/// let b = CheckSortedDisjoint::from([2..=6]);
/// let union = a | b;
/// assert_eq!(union.into_string(), "1..=100")
/// ```
// cmk #[derive(Clone, Debug)]
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct SymDiffIter<T, I>
where
T: Integer,
I: SortedStarts<T>,
{
iter: I,
start_or_min_value: T,
end_heap: BinaryHeap<Reverse<T>>,
next_again: Option<RangeInclusive<T>>,
gather: Option<RangeInclusive<T>>,
}
impl<T, I> FusedIterator for SymDiffIter<T, I>
where
T: Integer,
I: SortedStarts<T>,
{
}
impl<T, I> Iterator for SymDiffIter<T, I>
where
T: Integer,
I: SortedStarts<T>,
{
type Item = RangeInclusive<T>;
fn next(&mut self) -> Option<RangeInclusive<T>> {
loop {
let count = self.end_heap.len();
let Some(next_range) = self.next_again.take().or_else(|| self.iter.next()) else {
// The workspace is empty and next is empty, so return everything gathered.
if count == 0 {
return self.gather.take();
};
// The workspace is not empty (but next is empty) is process the next chunk of the workspace.
let end = self.end_heap.pop().unwrap().0;
self.remove_same_end(end);
let result = self.start_or_min_value..=end;
if !self.end_heap.is_empty() {
self.start_or_min_value = end + T::one(); // The 'if' prevents overflow.
}
if let Some(result) = self.process(count % 2 == 1, result) {
return result;
}
continue;
};
// Next has the same start as the workspace, so add it to the workspace.
// (or the workspace is empty, so add it to the workspace.)
let (next_start, next_end) = next_range.into_inner();
if count == 0 || self.start_or_min_value == next_start {
self.start_or_min_value = next_start;
self.end_heap.push(Reverse(next_end));
continue;
}
// Next start inside the workspace's first chunk, so process up to next_start.
let end = self.end_heap.peek().unwrap().0;
if next_start <= end {
let result = self.start_or_min_value..=next_start - T::one();
self.start_or_min_value = next_start;
self.end_heap.push(Reverse(next_end));
if let Some(result) = self.process(count % 2 == 1, result) {
return result;
}
continue;
}
// Next start is after the workspaces end, but the workspace contains only one chuck,
// so process the workspace and set the workspace to next.
self.remove_same_end(end);
let result = self.start_or_min_value..=end;
if self.end_heap.is_empty() {
self.start_or_min_value = next_start;
self.end_heap.push(Reverse(next_end));
if let Some(result) = self.process(count % 2 == 1, result) {
return result;
}
continue;
}
// Next start is after the workspaces end, and the workspace contains more than one chuck,
// so process one chunk and then process next
self.start_or_min_value = end + T::one();
self.next_again = Some(next_start..=next_end);
if let Some(result) = self.process(count % 2 == 1, result) {
return result;
}
// continue;
}
}
}
impl<T, I> SymDiffIter<T, I>
where
T: Integer,
I: SortedStarts<T>,
{
#[inline]
fn remove_same_end(&mut self, end: T) {
while let Some(end2) = self.end_heap.peek() {
if end2.0 == end {
self.end_heap.pop();
} else {
break;
}
}
}
#[inline]
fn process(
&mut self,
keep: bool,
next: RangeInclusive<T>,
) -> Option<Option<RangeInclusive<T>>> {
if !keep {
return None;
}
let Some(gather) = self.gather.take() else {
self.gather = Some(next);
return None;
};
// If there is no "next" then return gather if it exists.
// Take both next and gather apart.
let (next_start, next_end) = next.into_inner();
let (gather_start, gather_end) = gather.into_inner();
// We can assume gather_end < next_start.
debug_assert!(gather_end < next_start); // real assert
// If they touch, set gather to the union and loop.
if gather_end + T::one() == next_start {
self.gather = Some(gather_start..=next_end);
return None;
}
// Next is disjoint from gather, so return gather and set gather to next.
self.gather = Some(next_start..=next_end);
return Some(Some(gather_start..=gather_end));
}
/// Creates a new [`SymDiffIter`] from zero or more [`SortedDisjointMap`] iterators.
/// See [`SymDiffIter`] for more details and examples.
pub fn new(iter: I) -> Self {
Self {
iter,
start_or_min_value: T::min_value(),
end_heap: BinaryHeap::with_capacity(10),
next_again: None,
gather: None,
}
}
}
impl<T, L, R> BitXorMerge<T, L, R>
where
T: Integer,
L: SortedDisjoint<T>,
R: SortedDisjoint<T>,
{
// cmk fix the comment on the set size. It should say inputs are SortedStarts not SortedDisjoint.
/// Creates a new [`SymDiffIter`] from zero or more [`SortedDisjointMap`] iterators. See [`SymDiffIter`] for more details and examples.
pub fn new2(left: L, right: R) -> Self {
let iter = Merge::new(left, right);
Self::new(iter)
}
}
/// cmk doc
impl<T, J> BitXorKMerge<T, J>
where
T: Integer,
J: SortedDisjoint<T>,
{
// cmk fix the comment on the set size. It should say inputs are SortedStarts not SortedDisjoint.
/// Creates a new [`SymDiffIter`] from zero or more [`SortedDisjointMap`] iterators. See [`SymDiffIter`] for more details and examples.
pub fn new_k<K>(k: K) -> Self
where
K: IntoIterator<Item = J>,
{
let iter = KMerge::new(k);
Self::new(iter)
}
}