1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
use core::{
cmp::{self, min},
iter::FusedIterator,
ops::RangeInclusive,
};
use alloc::collections::BinaryHeap;
use alloc::format;
use alloc::string::String;
use alloc::string::ToString;
use crate::{
map::{CloneBorrow, ValueOwned},
merge_map::KMergeMap,
sorted_disjoint_map::{Priority, PrioritySortedStartsMap},
BitXorMapKMerge, BitXorMapMerge, Integer, MergeMap, SortedDisjointMap,
};
/// Turns any number of [`SortedDisjointMap`] iterators into a [`SortedDisjointMap`] iterator of their union,
/// i.e., all the integers in any input iterator, as sorted & disjoint ranges. Uses [`Merge`]
/// or [`KMerge`].
///
/// [`SortedDisjointMap`]: crate::SortedDisjointMap
/// [`Merge`]: crate::Merge
/// [`KMerge`]: crate::KMerge
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
/// use range_set_blaze::{SymDiffIterMap, Merge, SortedDisjointMap, CheckSortedDisjoint};
///
/// let a = CheckSortedDisjoint::new([1..=2, 5..=100].into_iter());
/// let b = CheckSortedDisjoint::from([2..=6]);
/// let union = SymDiffIterMap::new(Merge::new(a, b));
/// assert_eq!(union.into_string(), "1..=100");
///
/// // Or, equivalently:
/// let a = CheckSortedDisjoint::new([1..=2, 5..=100].into_iter());
/// let b = CheckSortedDisjoint::from([2..=6]);
/// let union = a | b;
/// assert_eq!(union.into_string(), "1..=100")
/// ```
// cmk #[derive(Clone, Debug)]
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct SymDiffIterMap<T, V, VR, I>
where
T: Integer,
V: ValueOwned,
VR: CloneBorrow<V>,
I: PrioritySortedStartsMap<T, V, VR>,
{
iter: I,
next_item: Option<Priority<T, V, VR>>,
workspace: BinaryHeap<Priority<T, V, VR>>,
workspace_next_end: Option<T>,
gather: Option<(RangeInclusive<T>, VR)>,
ready_to_go: Option<(RangeInclusive<T>, VR)>,
}
fn min_next_end<T>(next_end: &Option<T>, next_item_end: T) -> Option<T>
where
T: Integer,
{
Some(next_end.map_or_else(
|| next_item_end,
|current_end| cmp::min(current_end, next_item_end),
))
}
impl<T, V, VR, I> FusedIterator for SymDiffIterMap<T, V, VR, I>
where
T: Integer,
V: ValueOwned,
VR: CloneBorrow<V>,
I: PrioritySortedStartsMap<T, V, VR>,
{
}
impl<T, V, VR, I> Iterator for SymDiffIterMap<T, V, VR, I>
where
T: Integer,
V: ValueOwned,
VR: CloneBorrow<V>,
I: PrioritySortedStartsMap<T, V, VR>,
{
type Item = (RangeInclusive<T>, VR);
fn next(&mut self) -> Option<(RangeInclusive<T>, VR)> {
// Keep doing this until we have something to return.
loop {
if let Some(value) = self.ready_to_go.take() {
// If ready_to_go is Some, return the value immediately.
// println!("cmk output1 range {:?}", value.0);
return Some(value);
};
// if self.next_item should go into the workspace, then put it there, get the next, next_item, and loop
if let Some(next_item) = self.next_item.take() {
let (next_start, next_end) = next_item.start_and_end();
// If workspace is empty, just push the next item
let Some(best) = self.workspace.peek() else {
// println!(
// "cmk pushing self.next_item {:?} into empty workspace",
// next_item.0
// );
self.workspace_next_end = min_next_end(&self.workspace_next_end, next_end);
self.workspace.push(next_item);
self.next_item = self.iter.next();
// println!(
// "cmk reading new self.next_item via .next() {:?}",
// cmk_debug_string(&self.next_item)
// );
// println!("cmk return to top of the main processing loop");
continue; // return to top of the main processing loop
};
let best = best.range_value();
if next_start == *best.0.start() {
// Always push (this differs from UnionIterMap)
self.workspace_next_end = min_next_end(&self.workspace_next_end, next_end);
self.workspace.push(next_item);
self.next_item = self.iter.next();
continue; // return to top of the main processing loop
}
// It does not go into the workspace, so just hold it and keep processing.
// println!(
// "cmk new start, so hold self.next_item {:?} for later",
// next_item.0
// );
self.next_item = Some(next_item);
}
// If the workspace is empty, we are done.
let Some(best) = self.workspace.peek() else {
debug_assert!(self.next_item.is_none());
debug_assert!(self.ready_to_go.is_none());
let value = self.gather.take();
// println!("cmk output2 range {:?}", cmk_debug_string(&value));
return value;
};
let best = best.range_value();
// We buffer for output the best item up to the start of the next item (if any).
// Find the start of the next item, if any.
// unwrap() is safe because we know the workspace is not empty
let mut next_end = self.workspace_next_end.take().unwrap();
if let Some(next_item) = self.next_item.as_ref() {
next_end = min(next_item.start() - T::one(), next_end);
}
// Add the front of best to the gather buffer.
if let Some(mut gather) = self.gather.take() {
if gather.1.borrow() == best.1.borrow()
&& *gather.0.end() + T::one() == *best.0.start()
{
if self.workspace.len() % 2 == 1 {
// if the gather is contiguous with the best, then merge them
gather.0 = *gather.0.start()..=next_end;
// println!(
// "cmk merge gather {:?} best {:?} as {:?} -> {:?}",
// gather.0,
// best.0,
// *best.0.start()..=next_end,
// gather.0
// );
self.gather = Some(gather);
} else {
// if an even number of items in the workspace, then flush the gather
self.ready_to_go = Some(gather);
debug_assert!(self.gather.is_none());
}
} else {
// if the gather is not contiguous with the best, then output the gather and set the gather to the best
// println!(
// "cmk new ready-to-go {:?}, new gather front of best {:?} as {:?}",
// gather.0,
// best.0,
// *best.0.start()..=next_end
// );
self.ready_to_go = Some(gather);
// cmk this code appear twice
if self.workspace.len() % 2 == 1 {
self.gather = Some((*best.0.start()..=next_end, best.1.clone_borrow()));
} else {
debug_assert!(self.gather.is_none());
}
}
} else {
// if there is no gather, then set the gather to the best
// println!(
// "cmk no gather, capture front of best {:?} as {:?}",
// best.0,
// *best.0.start()..=next_end
// );
if self.workspace.len() % 2 == 1 {
self.gather = Some((*best.0.start()..=next_end, best.1.clone_borrow()));
} else {
debug_assert!(self.gather.is_none());
}
};
// We also update the workspace to removing any items that are completely covered by the new_start.
// (Unlike UnionIterMap, we must keep any items that have a lower priority and are shorter than the new best.)
// cmk use .filter() ?
let mut new_workspace = BinaryHeap::new();
let mut new_next_end = None;
while let Some(item) = self.workspace.pop() {
let mut item = item;
if item.end() <= next_end {
// too short, don't keep
// println!("cmk too short, don't keep in workspace {:?}", item.0);
continue; // while loop
}
item.set_range(next_end + T::one()..=item.end());
new_next_end = min_next_end(&new_next_end, item.end());
new_workspace.push(item);
}
self.workspace = new_workspace;
self.workspace_next_end = new_next_end;
} // end of main loop
}
}
#[allow(dead_code)]
fn cmk_debug_string<'a, T, V, VR>(item: &Option<(RangeInclusive<T>, VR)>) -> String
where
T: Integer,
V: ValueOwned,
VR: CloneBorrow<V> + 'a,
{
if let Some(item) = item {
format!("Some({:?})", item.0)
} else {
"None".to_string()
}
}
impl<T, V, VR, L, R> BitXorMapMerge<T, V, VR, L, R>
where
T: Integer,
V: ValueOwned,
VR: CloneBorrow<V>,
L: SortedDisjointMap<T, V, VR>,
R: SortedDisjointMap<T, V, VR>,
{
// cmk fix the comment on the set size. It should say inputs are SortedStarts not SortedDisjoint.
/// Creates a new [`SymDiffIterMap`] from zero or more [`SortedDisjointMap`] iterators. See [`SymDiffIterMap`] for more details and examples.
pub fn new2(left: L, right: R) -> Self {
let iter = MergeMap::new(left, right);
Self::new(iter)
}
}
/// cmk doc
impl<T, V, VR, J> BitXorMapKMerge<T, V, VR, J>
where
T: Integer,
V: ValueOwned,
VR: CloneBorrow<V>,
J: SortedDisjointMap<T, V, VR>,
{
// cmk fix the comment on the set size. It should say inputs are SortedStarts not SortedDisjoint.
/// Creates a new [`SymDiffIterMap`] from zero or more [`SortedDisjointMap`] iterators. See [`SymDiffIterMap`] for more details and examples.
pub fn new_k<K>(k: K) -> Self
where
K: IntoIterator<Item = J>,
{
let iter = KMergeMap::new(k);
Self::new(iter)
}
}
impl<T, V, VR, I> SymDiffIterMap<T, V, VR, I>
where
T: Integer,
V: ValueOwned,
VR: CloneBorrow<V>,
I: PrioritySortedStartsMap<T, V, VR>,
{
/// Creates a new [`SymDiffIterMap`] from zero or more [`SortedDisjointMap`] iterators.
/// See [`SymDiffIterMap`] for more details and examples.
pub fn new(mut iter: I) -> Self {
let item = iter.next();
Self {
iter,
next_item: item,
workspace: BinaryHeap::new(),
workspace_next_end: None,
gather: None,
ready_to_go: None,
}
}
}