1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
#![cfg(feature = "rog-experimental")]
#![deprecated(
note = "The rog ('range or gap') module is experimental and may be changed or removed in future versions.
Changes may not be reflected in the semantic versioning."
)]
use alloc::collections::btree_map;
use alloc::vec::Vec;
use core::ops::{Bound, RangeBounds, RangeInclusive};
use crate::{Integer, RangeSetBlaze};
/// Experimental: An iterator over [`Rog`]s (ranges or gaps) in a [`RangeSetBlaze`].
///
/// See [`RangeSetBlaze::rogs_range`] for more information.
pub struct RogsIter<'a, T: Integer> {
end_in: T,
next_rog: Option<Rog<T>>,
final_gap_start: Option<T>,
btree_map_iter: btree_map::Range<'a, T, T>,
}
impl<T: Integer> Iterator for RogsIter<'_, T> {
type Item = Rog<T>;
fn next(&mut self) -> Option<Self::Item> {
if let Some(rog) = self.next_rog.take() {
return Some(rog);
};
if let Some((start_el, end_el)) = self.btree_map_iter.next() {
if self.end_in < *start_el {
self.btree_map_iter = btree_map::Range::default();
} else {
debug_assert!(self.final_gap_start.is_some()); // final_gap_start should be Some if we're in this branch
debug_assert!(self.final_gap_start.unwrap() < *start_el); // so -1 is safe
let result = Rog::Gap(self.final_gap_start.unwrap()..=*start_el - T::one());
if end_el < &self.end_in {
self.next_rog = Some(Rog::Range(*start_el..=*end_el));
debug_assert!(end_el < &self.end_in); // so +1 is safe
self.final_gap_start = Some(*end_el + T::one());
} else {
self.next_rog = Some(Rog::Range(*start_el..=self.end_in));
self.final_gap_start = None;
}
return Some(result);
}
};
if let Some(gap_start) = self.final_gap_start.take() {
return Some(Rog::Gap(gap_start..=self.end_in));
};
None
}
}
/// Experimental: Represents an range or gap in a [`RangeSetBlaze`].
///
/// See [`RangeSetBlaze::rogs_range`] and [`RangeSetBlaze::rogs_get`] for more information.
///
/// # Example
///
/// ```
/// use range_set_blaze::{RangeSetBlaze, Rog};
///
/// let range_set_blaze = RangeSetBlaze::from([1, 2, 3]);
/// assert_eq!(range_set_blaze.rogs_get(2), Rog::Range(1..=3));
/// assert_eq!(range_set_blaze.rogs_get(4), Rog::Gap(4..=2_147_483_647));
/// ```
#[derive(Debug, PartialEq)]
pub enum Rog<T: Integer> {
/// A range of integers in a [`RangeSetBlaze`].
Range(RangeInclusive<T>),
/// A gap between integers in a [`RangeSetBlaze`].
Gap(RangeInclusive<T>),
}
impl<T: Integer> Rog<T> {
/// Returns the start of a [`Rog`] (range or gap).
///
/// # Examples
///
/// ```
/// use range_set_blaze::Rog;
/// assert_eq!(Rog::Gap(1..=3).start(), 1);
/// ```
pub fn start(&self) -> T {
match self {
Rog::Range(r) => *r.start(),
Rog::Gap(r) => *r.start(),
}
}
/// Returns the inclusive end of a [`Rog`] (range or gap).
///
/// # Examples
///
/// ```
/// use range_set_blaze::Rog;
/// assert_eq!(Rog::Gap(1..=3).end(), 3);
/// ```
pub fn end(&self) -> T {
match self {
Rog::Range(r) => *r.end(),
Rog::Gap(r) => *r.end(),
}
}
/// Returns `true` if the [`Rog`] (range or gap) contains the given integer.
///
/// # Examples
///
/// ```
/// use range_set_blaze::Rog;
/// assert!(Rog::Gap(1..=3).contains(2));
/// assert!(!Rog::Gap(1..=3).contains(4));
/// ```
pub fn contains(&self, value: T) -> bool {
match self {
Rog::Range(r) => r.contains(&value),
Rog::Gap(r) => r.contains(&value),
}
}
}
impl<T: Integer> RangeSetBlaze<T> {
/// Experimental: Returns the [`Rog`] (range or gap) containing the given integer. If the
/// [`RangeSetBlaze`] contains the integer, returns a [`Rog::Range`]. If the
/// [`RangeSetBlaze`] does not contain the integer, returns a [`Rog::Gap`].
///
/// # Panics
///
/// Panics if the `value > T::safe_max_value()`.
///
/// # Enabling
///
/// This method is experimental and must be enabled with the `rog-experimental` feature.
/// ```bash
/// cargo add range-set-blaze --features "rog-experimental"
/// ```
///
/// # Examples
///
/// ```
/// use range_set_blaze::{RangeSetBlaze, Rog};
///
/// let range_set_blaze = RangeSetBlaze::from([1, 2, 3]);
/// assert_eq!(range_set_blaze.rogs_get(2), Rog::Range(1..=3));
/// assert_eq!(range_set_blaze.rogs_get(4), Rog::Gap(4..=2_147_483_647));
/// ```
pub fn rogs_get(&self, value: T) -> Rog<T> {
assert!(
value <= T::safe_max_value(),
"value must be <= T::safe_max_value()"
);
let mut before = self.btree_map.range(..=value).rev();
if let Some((start_before, end_before)) = before.next() {
if end_before < &value {
// case 1: range doesn't touch the before range
let start_out = *end_before + T::one();
if let Some((start_next, _)) = self.btree_map.range(value..).next() {
debug_assert!(start_before < start_next); // so -1 is safe
Rog::Gap(start_out..=*start_next - T::one())
} else {
Rog::Gap(start_out..=T::safe_max_value())
}
} else {
// case 2&3: the range touches the before range
Rog::Range(*start_before..=*end_before)
}
} else {
// case 4: there is no before range
if let Some((start_next, _)) = self.btree_map.range(value..).next() {
debug_assert!(value < *start_next); // so -1 is safe
Rog::Gap(T::min_value()..=*start_next - T::one())
} else {
Rog::Gap(T::min_value()..=T::safe_max_value())
}
}
}
/// Experimental: Constructs an iterator over a sub-range of [`Rog`]'s (ranges and gaps) in the [`RangeSetBlaze`].
/// The simplest way is to use the range syntax `min..=max`, thus `range(min..=max)` will
/// yield elements from min (inclusive) to max (inclusive).
/// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example
/// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive
/// range from 4 to 10.
///
/// # Panics
///
/// Panics if range `start > end`.
///
/// Panics if range `start == end` and both bounds are `Excluded`.
///
/// Panics if range `end > T::safe_max_value()`.
///
/// # Enabling
///
/// This method is experimental and must be enabled with the `rog-experimental` feature.
/// ```bash
/// cargo add range-set-blaze --features "rog-experimental"
/// ```
///
/// # Examples
///
/// ```rangesetblaze::new()//
/// use range_set_blaze::{RangeSetBlaze, Rog;};
/// use core::ops::Bound::Included;
///
/// let mut set = RangeSetBlaze::new();
/// set.insert(3);
/// set.insert(5);
/// set.insert(6);
/// for rog in set.rogs_range((Included(4), Included(8))) {
/// println!("{rog:?}");
/// } // prints: Gap(4..=4)\nRange(5..=6)\nGap(7..=8)
///
/// assert_eq!(Some(Rog::Gap(4..=4)), set.rogs_range(4..).next());
///
/// let a = RangeSetBlaze::from_iter([1..=6, 11..=15]);
/// assert_eq!(
/// a.rogs_range(-5..=8).collect::<Vec<_>>(),
/// vec![Rog::Gap(-5..=0), Rog::Range(1..=6), Rog::Gap(7..=8)]
/// );
///
/// let empty = RangeSetBlaze::<u8>::new();
/// assert_eq!(
/// empty.rogs_range(..).collect::<Vec<_>>(),
/// vec![Rog::Gap(0..=255)]
/// );
/// ```
pub fn rogs_range<R>(&self, range: R) -> RogsIter<T>
where
R: RangeBounds<T>,
{
let (start_in, end_in) = extract_range(range);
let mut before = self.btree_map.range(..=start_in).rev();
if let Some((_, end_before)) = before.next() {
if end_before < &start_in {
// case 1: range doesn't touch the before range
RogsIter {
end_in,
next_rog: None,
final_gap_start: Some(start_in),
btree_map_iter: self.btree_map.range(start_in..),
}
} else if end_before < &end_in {
// case 2: the range touches and extends beyond the before range
debug_assert!(*end_before < end_in); // so +1 is safe
debug_assert!(start_in <= *end_before); // so +1 is safe
RogsIter {
end_in,
next_rog: Some(Rog::Range(start_in..=*end_before)),
final_gap_start: Some(*end_before + T::one()),
btree_map_iter: self.btree_map.range(start_in + T::one()..),
}
} else {
// case 3 the range is completely contained in the before range
RogsIter {
end_in,
next_rog: Some(Rog::Range(start_in..=end_in)),
final_gap_start: None,
btree_map_iter: btree_map::Range::default(),
}
}
} else {
// case 4: there is no before range
RogsIter {
end_in,
next_rog: None,
final_gap_start: Some(start_in),
btree_map_iter: self.btree_map.range(start_in..),
}
}
}
/// Used internally to test `rogs_range`.
#[doc(hidden)]
pub fn _rogs_range_slow<R>(&self, range: R) -> Vec<Rog<T>>
where
R: RangeBounds<T>,
{
let (start_in, end_in) = extract_range(range);
let rsb_in = RangeSetBlaze::from_iter([start_in..=end_in]);
let ranges = &rsb_in & self;
let gaps = rsb_in - self;
let ranges = ranges.ranges().map(|r| Rog::Range(r));
let gaps = gaps.ranges().map(|r| Rog::Gap(r));
let mut result = ranges.chain(gaps).collect::<Vec<Rog<T>>>();
result.sort_by_key(|a| a.start());
result
}
/// Used internally to test `rogs_get`.
#[doc(hidden)]
pub fn rogs_get_slow(&self, value: T) -> Rog<T> {
assert!(
value <= T::safe_max_value(),
"value must be <= T::safe_max_value()"
);
let all_rogs = self._rogs_range_slow(..);
for rog in all_rogs {
if rog.contains(value) {
return rog;
}
}
unreachable!("value must be in something");
}
}
fn extract_range<T: Integer, R>(range: R) -> (T, T)
where
R: RangeBounds<T>,
{
let start = match range.start_bound() {
Bound::Included(n) => *n,
Bound::Excluded(n) => {
assert!(
*n < T::safe_max_value(),
"inclusive start must be <= T::max_safe_value()"
);
*n + T::one()
}
Bound::Unbounded => T::min_value(),
};
let end = match range.end_bound() {
Bound::Included(n) => *n,
Bound::Excluded(n) => {
assert!(
*n > T::min_value(),
"inclusive end must be >= T::min_value()"
);
*n - T::one()
}
Bound::Unbounded => T::safe_max_value(),
};
assert!(start <= end, "start must be <= end");
assert!(
end <= T::safe_max_value(),
"end must be <= T::safe_max_value()"
);
(start, end)
}