range_alloc/
lib.rs

1use std::{
2    fmt::Debug,
3    iter::Sum,
4    ops::{Add, AddAssign, Range, Sub},
5};
6
7#[derive(Debug)]
8pub struct RangeAllocator<T> {
9    /// The range this allocator covers.
10    initial_range: Range<T>,
11    /// A Vec of ranges in this heap which are unused.
12    /// Must be ordered with ascending range start to permit short circuiting allocation.
13    /// No two ranges in this vec may overlap.
14    free_ranges: Vec<Range<T>>,
15}
16
17#[derive(Clone, Debug, PartialEq)]
18pub struct RangeAllocationError<T> {
19    pub fragmented_free_length: T,
20}
21
22impl<T> RangeAllocator<T>
23where
24    T: Clone + Copy + Add<Output = T> + AddAssign + Sub<Output = T> + Eq + PartialOrd + Debug,
25{
26    pub fn new(range: Range<T>) -> Self {
27        RangeAllocator {
28            initial_range: range.clone(),
29            free_ranges: vec![range],
30        }
31    }
32
33    pub fn initial_range(&self) -> &Range<T> {
34        &self.initial_range
35    }
36
37    pub fn grow_to(&mut self, new_end: T) {
38        let initial_range_end = self.initial_range.end;
39        if let Some(last_range) = self
40            .free_ranges
41            .last_mut()
42            .filter(|last_range| last_range.end == initial_range_end)
43        {
44            last_range.end = new_end;
45        } else {
46            self.free_ranges.push(self.initial_range.end..new_end);
47        }
48
49        self.initial_range.end = new_end;
50    }
51
52    pub fn allocate_range(&mut self, length: T) -> Result<Range<T>, RangeAllocationError<T>> {
53        assert_ne!(length + length, length);
54        let mut best_fit: Option<(usize, Range<T>)> = None;
55
56        // This is actually correct. With the trait bound as it is, we have
57        // no way to summon a value of 0 directly, so we make one by subtracting
58        // something from itself. Once the trait bound can be changed, this can
59        // be fixed.
60        #[allow(clippy::eq_op)]
61        let mut fragmented_free_length = length - length;
62        for (index, range) in self.free_ranges.iter().cloned().enumerate() {
63            let range_length = range.end - range.start;
64            fragmented_free_length += range_length;
65            if range_length < length {
66                continue;
67            } else if range_length == length {
68                // Found a perfect fit, so stop looking.
69                best_fit = Some((index, range));
70                break;
71            }
72            best_fit = Some(match best_fit {
73                Some((best_index, best_range)) => {
74                    // Find best fit for this allocation to reduce memory fragmentation.
75                    if range_length < best_range.end - best_range.start {
76                        (index, range)
77                    } else {
78                        (best_index, best_range.clone())
79                    }
80                }
81                None => (index, range),
82            });
83        }
84        match best_fit {
85            Some((index, range)) => {
86                if range.end - range.start == length {
87                    self.free_ranges.remove(index);
88                } else {
89                    self.free_ranges[index].start += length;
90                }
91                Ok(range.start..(range.start + length))
92            }
93            None => Err(RangeAllocationError {
94                fragmented_free_length,
95            }),
96        }
97    }
98
99    pub fn free_range(&mut self, range: Range<T>) {
100        assert!(self.initial_range.start <= range.start && range.end <= self.initial_range.end);
101        assert!(range.start < range.end);
102
103        // Get insertion position.
104        let i = self
105            .free_ranges
106            .iter()
107            .position(|r| r.start > range.start)
108            .unwrap_or(self.free_ranges.len());
109
110        // Try merging with neighboring ranges in the free list.
111        // Before: |left|-(range)-|right|
112        if i > 0 && range.start == self.free_ranges[i - 1].end {
113            // Merge with |left|.
114            self.free_ranges[i - 1].end =
115                if i < self.free_ranges.len() && range.end == self.free_ranges[i].start {
116                    // Check for possible merge with |left| and |right|.
117                    let right = self.free_ranges.remove(i);
118                    right.end
119                } else {
120                    range.end
121                };
122
123            return;
124        } else if i < self.free_ranges.len() && range.end == self.free_ranges[i].start {
125            // Merge with |right|.
126            self.free_ranges[i].start = if i > 0 && range.start == self.free_ranges[i - 1].end {
127                // Check for possible merge with |left| and |right|.
128                let left = self.free_ranges.remove(i - 1);
129                left.start
130            } else {
131                range.start
132            };
133
134            return;
135        }
136
137        // Debug checks
138        assert!(
139            (i == 0 || self.free_ranges[i - 1].end < range.start)
140                && (i >= self.free_ranges.len() || range.end < self.free_ranges[i].start)
141        );
142
143        self.free_ranges.insert(i, range);
144    }
145
146    /// Returns an iterator over allocated non-empty ranges
147    pub fn allocated_ranges(&self) -> impl Iterator<Item = Range<T>> + '_ {
148        let first = match self.free_ranges.first() {
149            Some(Range { ref start, .. }) if *start > self.initial_range.start => {
150                Some(self.initial_range.start..*start)
151            }
152            None => Some(self.initial_range.clone()),
153            _ => None,
154        };
155
156        let last = match self.free_ranges.last() {
157            Some(Range { end, .. }) if *end < self.initial_range.end => {
158                Some(*end..self.initial_range.end)
159            }
160            _ => None,
161        };
162
163        let mid = self
164            .free_ranges
165            .iter()
166            .zip(self.free_ranges.iter().skip(1))
167            .map(|(ra, rb)| ra.end..rb.start);
168
169        first.into_iter().chain(mid).chain(last)
170    }
171
172    pub fn reset(&mut self) {
173        self.free_ranges.clear();
174        self.free_ranges.push(self.initial_range.clone());
175    }
176
177    pub fn is_empty(&self) -> bool {
178        self.free_ranges.len() == 1 && self.free_ranges[0] == self.initial_range
179    }
180}
181
182impl<T: Copy + Sub<Output = T> + Sum> RangeAllocator<T> {
183    pub fn total_available(&self) -> T {
184        self.free_ranges
185            .iter()
186            .map(|range| range.end - range.start)
187            .sum()
188    }
189}
190
191#[cfg(test)]
192mod tests {
193    use super::*;
194
195    #[test]
196    fn test_basic_allocation() {
197        let mut alloc = RangeAllocator::new(0..10);
198        // Test if an allocation works
199        assert_eq!(alloc.allocate_range(4), Ok(0..4));
200        assert!(alloc.allocated_ranges().eq(std::iter::once(0..4)));
201        // Free the prior allocation
202        alloc.free_range(0..4);
203        // Make sure the free actually worked
204        assert_eq!(alloc.free_ranges, vec![0..10]);
205        assert!(alloc.allocated_ranges().eq(std::iter::empty()));
206    }
207
208    #[test]
209    fn test_out_of_space() {
210        let mut alloc = RangeAllocator::new(0..10);
211        // Test if the allocator runs out of space correctly
212        assert_eq!(alloc.allocate_range(10), Ok(0..10));
213        assert!(alloc.allocated_ranges().eq(std::iter::once(0..10)));
214        assert!(alloc.allocate_range(4).is_err());
215        alloc.free_range(0..10);
216    }
217
218    #[test]
219    fn test_grow() {
220        let mut alloc = RangeAllocator::new(0..11);
221        // Test if the allocator runs out of space correctly
222        assert_eq!(alloc.allocate_range(10), Ok(0..10));
223        assert!(alloc.allocated_ranges().eq(std::iter::once(0..10)));
224        assert!(alloc.allocate_range(4).is_err());
225        alloc.grow_to(20);
226        assert_eq!(alloc.allocate_range(4), Ok(10..14));
227        alloc.free_range(0..14);
228    }
229
230    #[test]
231    fn test_grow_with_hole_at_start() {
232        let mut alloc = RangeAllocator::new(0..6);
233
234        assert_eq!(alloc.allocate_range(3), Ok(0..3));
235        assert_eq!(alloc.allocate_range(3), Ok(3..6));
236        alloc.free_range(0..3);
237
238        alloc.grow_to(9);
239        assert_eq!(alloc.allocated_ranges().collect::<Vec<_>>(), [3..6]);
240    }
241    #[test]
242    fn test_grow_with_hole_in_middle() {
243        let mut alloc = RangeAllocator::new(0..6);
244
245        assert_eq!(alloc.allocate_range(2), Ok(0..2));
246        assert_eq!(alloc.allocate_range(2), Ok(2..4));
247        assert_eq!(alloc.allocate_range(2), Ok(4..6));
248        alloc.free_range(2..4);
249
250        alloc.grow_to(9);
251        assert_eq!(alloc.allocated_ranges().collect::<Vec<_>>(), [0..2, 4..6]);
252    }
253
254    #[test]
255    fn test_dont_use_block_that_is_too_small() {
256        let mut alloc = RangeAllocator::new(0..10);
257        // Allocate three blocks then free the middle one and check for correct state
258        assert_eq!(alloc.allocate_range(3), Ok(0..3));
259        assert_eq!(alloc.allocate_range(3), Ok(3..6));
260        assert_eq!(alloc.allocate_range(3), Ok(6..9));
261        alloc.free_range(3..6);
262        assert_eq!(alloc.free_ranges, vec![3..6, 9..10]);
263        assert_eq!(
264            alloc.allocated_ranges().collect::<Vec<Range<i32>>>(),
265            vec![0..3, 6..9]
266        );
267        // Now request space that the middle block can fill, but the end one can't.
268        assert_eq!(alloc.allocate_range(3), Ok(3..6));
269    }
270
271    #[test]
272    fn test_free_blocks_in_middle() {
273        let mut alloc = RangeAllocator::new(0..100);
274        // Allocate many blocks then free every other block.
275        assert_eq!(alloc.allocate_range(10), Ok(0..10));
276        assert_eq!(alloc.allocate_range(10), Ok(10..20));
277        assert_eq!(alloc.allocate_range(10), Ok(20..30));
278        assert_eq!(alloc.allocate_range(10), Ok(30..40));
279        assert_eq!(alloc.allocate_range(10), Ok(40..50));
280        assert_eq!(alloc.allocate_range(10), Ok(50..60));
281        assert_eq!(alloc.allocate_range(10), Ok(60..70));
282        assert_eq!(alloc.allocate_range(10), Ok(70..80));
283        assert_eq!(alloc.allocate_range(10), Ok(80..90));
284        assert_eq!(alloc.allocate_range(10), Ok(90..100));
285        assert_eq!(alloc.free_ranges, vec![]);
286        assert!(alloc.allocated_ranges().eq(std::iter::once(0..100)));
287        alloc.free_range(10..20);
288        alloc.free_range(30..40);
289        alloc.free_range(50..60);
290        alloc.free_range(70..80);
291        alloc.free_range(90..100);
292        // Check that the right blocks were freed.
293        assert_eq!(
294            alloc.free_ranges,
295            vec![10..20, 30..40, 50..60, 70..80, 90..100]
296        );
297        assert_eq!(
298            alloc.allocated_ranges().collect::<Vec<Range<i32>>>(),
299            vec![0..10, 20..30, 40..50, 60..70, 80..90]
300        );
301        // Fragment the memory on purpose a bit.
302        assert_eq!(alloc.allocate_range(6), Ok(10..16));
303        assert_eq!(alloc.allocate_range(6), Ok(30..36));
304        assert_eq!(alloc.allocate_range(6), Ok(50..56));
305        assert_eq!(alloc.allocate_range(6), Ok(70..76));
306        assert_eq!(alloc.allocate_range(6), Ok(90..96));
307        // Check for fragmentation.
308        assert_eq!(
309            alloc.free_ranges,
310            vec![16..20, 36..40, 56..60, 76..80, 96..100]
311        );
312        assert_eq!(
313            alloc.allocated_ranges().collect::<Vec<Range<i32>>>(),
314            vec![0..16, 20..36, 40..56, 60..76, 80..96]
315        );
316        // Fill up the fragmentation
317        assert_eq!(alloc.allocate_range(4), Ok(16..20));
318        assert_eq!(alloc.allocate_range(4), Ok(36..40));
319        assert_eq!(alloc.allocate_range(4), Ok(56..60));
320        assert_eq!(alloc.allocate_range(4), Ok(76..80));
321        assert_eq!(alloc.allocate_range(4), Ok(96..100));
322        // Check that nothing is free.
323        assert_eq!(alloc.free_ranges, vec![]);
324        assert!(alloc.allocated_ranges().eq(std::iter::once(0..100)));
325    }
326
327    #[test]
328    fn test_ignore_block_if_another_fits_better() {
329        let mut alloc = RangeAllocator::new(0..10);
330        // Allocate blocks such that the only free spaces available are 3..6 and 9..10
331        // in order to prepare for the next test.
332        assert_eq!(alloc.allocate_range(3), Ok(0..3));
333        assert_eq!(alloc.allocate_range(3), Ok(3..6));
334        assert_eq!(alloc.allocate_range(3), Ok(6..9));
335        alloc.free_range(3..6);
336        assert_eq!(alloc.free_ranges, vec![3..6, 9..10]);
337        assert_eq!(
338            alloc.allocated_ranges().collect::<Vec<Range<i32>>>(),
339            vec![0..3, 6..9]
340        );
341        // Now request space that can be filled by 3..6 but should be filled by 9..10
342        // because 9..10 is a perfect fit.
343        assert_eq!(alloc.allocate_range(1), Ok(9..10));
344    }
345
346    #[test]
347    fn test_merge_neighbors() {
348        let mut alloc = RangeAllocator::new(0..9);
349        assert_eq!(alloc.allocate_range(3), Ok(0..3));
350        assert_eq!(alloc.allocate_range(3), Ok(3..6));
351        assert_eq!(alloc.allocate_range(3), Ok(6..9));
352        alloc.free_range(0..3);
353        alloc.free_range(6..9);
354        alloc.free_range(3..6);
355        assert_eq!(alloc.free_ranges, vec![0..9]);
356        assert!(alloc.allocated_ranges().eq(std::iter::empty()));
357    }
358}