[−][src]Crate randomforest
Random forest classifier and regressor.
Examples
use randomforest::criterion::Mse; use randomforest::RandomForestRegressorOptions; use randomforest::table::TableBuilder; let features = [ &[0.0, 2.0, 1.0, 0.0][..], &[0.0, 2.0, 1.0, 1.0][..], &[1.0, 2.0, 1.0, 0.0][..], &[2.0, 1.0, 1.0, 0.0][..], &[2.0, 0.0, 0.0, 0.0][..], &[2.0, 0.0, 0.0, 1.0][..], &[1.0, 0.0, 0.0, 1.0][..], &[0.0, 1.0, 1.0, 0.0][..], &[0.0, 0.0, 0.0, 0.0][..], &[2.0, 1.0, 0.0, 0.0][..], &[0.0, 1.0, 0.0, 1.0][..], &[1.0, 1.0, 1.0, 1.0][..], ]; let target = [ 25.0, 30.0, 46.0, 45.0, 52.0, 23.0, 43.0, 35.0, 38.0, 46.0, 48.0, 52.0 ]; let mut table_builder = TableBuilder::new(); for (xs, y) in features.iter().zip(target.iter()) { table_builder.add_row(xs, *y)?; } let table = table_builder.build()?; let regressor = RandomForestRegressorOptions::new() .seed(0) .fit(Mse, table); assert_eq!(regressor.predict(&[1.0, 2.0, 0.0, 0.0]), 41.9785);
Modules
criterion | Criterions to measure the quality of a node split. |
table | Table data which contains features and a target columns. |
Structs
RandomForestClassifier | Random forest classifier. |
RandomForestClassifierOptions | Random forest options. |
RandomForestRegressor | Random forest regressor. |
RandomForestRegressorOptions | Random forest options. |