1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
use std::{
    collections::{BTreeSet, HashMap},
    mem::MaybeUninit,
};

use tracing::Level;

use crate::{dispatch::eval_rule, utils::TensorIter, Tensor};
pub trait Function<const IN: usize, const OUT: usize> {
    fn call(&self, primals: &[Tensor; IN]) -> [Tensor; OUT];
}

impl<F> Function<1, 1> for F
where
    F: Fn(&Tensor) -> Tensor,
{
    fn call(&self, primals: &[Tensor; 1]) -> [Tensor; 1] {
        [self(&primals[0])]
    }
}

impl<F> Function<2, 1> for F
where
    F: Fn(&Tensor, &Tensor) -> Tensor,
{
    fn call(&self, primals: &[Tensor; 2]) -> [Tensor; 1] {
        [self(&primals[0], &primals[1])]
    }
}

impl<F> Function<3, 1> for F
where
    F: Fn(&Tensor, &Tensor, &Tensor) -> Tensor,
{
    fn call(&self, primals: &[Tensor; 3]) -> [Tensor; 1] {
        [self(&primals[0], &primals[1], &primals[2])]
    }
}

pub fn jvp<const IN: usize, const OUT: usize, F>(
    func: F,
    primals: &[Tensor; IN],
    tangents: &[Tensor; IN],
) -> ([Tensor; OUT], [Tensor; OUT])
where
    F: Function<IN, OUT>,
{
    let mut tangent_map = HashMap::new();

    for (p, t) in primals.iter().zip(tangents) {
        tangent_map.insert(p.id(), t.clone());
    }
    let outputs = func.call(primals);

    let mut jvps: [MaybeUninit<Tensor>; OUT] = unsafe { MaybeUninit::uninit().assume_init() };
    for (i, t) in outputs.iter().enumerate() {
        jvps[i] = MaybeUninit::new(t.jvp(&mut tangent_map));
    }
    let jvps = unsafe { MaybeUninit::array_assume_init(jvps) };

    (outputs, jvps)
}

type VjpFn<const IN: usize, const OUT: usize> = Box<dyn Fn([Tensor; OUT]) -> [Tensor; IN]>;

#[tracing::instrument(skip(func), name = "transform::vjp" level = Level::TRACE)]
pub fn vjp<const IN: usize, const OUT: usize, F>(
    func: F,
    primals: &[Tensor; IN],
) -> ([Tensor; OUT], VjpFn<IN, OUT>)
where
    F: Function<IN, OUT>,
{
    let outputs = func.call(primals);

    let outs = outputs.clone();
    let primal_ids: Vec<usize> = primals.iter().map(|v| v.id()).collect();
    let vjps_fn = move |cotangents: [Tensor; OUT]| {
        let mut cotangent_map = HashMap::new();

        for (p, c) in outs.iter().zip(cotangents) {
            cotangent_map.insert(p.id(), c);
        }

        for t in outs.iter() {
            t.vjp(&mut cotangent_map);
        }

        let mut vjps: [MaybeUninit<Tensor>; IN] = unsafe { MaybeUninit::uninit().assume_init() };

        for (i, id) in primal_ids.iter().enumerate() {
            vjps[i] = MaybeUninit::new(cotangent_map.get(id).unwrap().clone());
        }

        unsafe { MaybeUninit::array_assume_init(vjps) }
    };

    (outputs, Box::new(vjps_fn))
}

#[derive(Clone)]
pub struct GradFunc<const IN: usize, const OUT: usize, F>
where
    F: Function<IN, OUT> + Clone + 'static,
{
    func: F,
}
impl<const IN: usize, const OUT: usize, F> GradFunc<IN, OUT, F>
where
    F: Function<IN, OUT> + Clone + 'static,
{
    pub fn new(func: F) -> Self {
        Self { func }
    }

    #[tracing::instrument(skip(self), name = "GradFunc::call" level = Level::TRACE)]
    fn call(&self, primals: &[Tensor; IN]) -> [Tensor; IN] {
        let (outputs, f_vjp) = vjp(self.func.clone(), primals);

        let mut cotangents: [MaybeUninit<Tensor>; OUT] =
            unsafe { MaybeUninit::uninit().assume_init() };

        for (i, t) in outputs.iter().enumerate() {
            cotangents[i] = MaybeUninit::new(t.ones_like());
        }

        let cotangents = unsafe { MaybeUninit::array_assume_init(cotangents) };

        f_vjp(cotangents)
    }
}

impl<const IN: usize, const OUT: usize, F> FnOnce<(&[Tensor; IN],)> for GradFunc<IN, OUT, F>
where
    F: Function<IN, OUT> + Clone + 'static,
{
    type Output = [Tensor; IN];

    extern "rust-call" fn call_once(self, args: (&[Tensor; IN],)) -> Self::Output {
        let inputs = args.0;
        self.call(inputs)
    }
}

impl<const IN: usize, const OUT: usize, F> FnMut<(&[Tensor; IN],)> for GradFunc<IN, OUT, F>
where
    F: Function<IN, OUT> + Clone + 'static,
{
    extern "rust-call" fn call_mut(&mut self, args: (&[Tensor; IN],)) -> Self::Output {
        let inputs = args.0;
        self.call(inputs)
    }
}

impl<const IN: usize, const OUT: usize, F> Fn<(&[Tensor; IN],)> for GradFunc<IN, OUT, F>
where
    F: Function<IN, OUT> + Clone + 'static,
{
    extern "rust-call" fn call(&self, args: (&[Tensor; IN],)) -> Self::Output {
        let inputs = args.0;
        self.call(inputs)
    }
}

impl<const IN: usize, const OUT: usize, F> Function<IN, IN> for GradFunc<IN, OUT, F>
where
    F: Function<IN, OUT> + Clone + 'static,
{
    fn call(&self, primals: &[Tensor; IN]) -> [Tensor; IN] {
        self(primals)
    }
}

pub struct ValueAndGradFunc<const IN: usize, const OUT: usize, F>
where
    F: Function<IN, OUT> + Clone + 'static,
{
    func: F,
}

impl<const IN: usize, const OUT: usize, F> ValueAndGradFunc<IN, OUT, F>
where
    F: Function<IN, OUT> + Clone + 'static,
{
    pub fn new(func: F) -> Self {
        Self { func }
    }

    fn call(&self, primals: &[Tensor; IN]) -> ([Tensor; OUT], [Tensor; IN]) {
        let (outputs, f_vjp) = vjp(self.func.clone(), primals);

        let mut cotangents: [MaybeUninit<Tensor>; OUT] =
            unsafe { MaybeUninit::uninit().assume_init() };

        for (i, t) in outputs.iter().enumerate() {
            cotangents[i] = MaybeUninit::new(t.ones_like());
        }

        let cotangents = unsafe { MaybeUninit::array_assume_init(cotangents) };

        let grads = f_vjp(cotangents);
        (outputs, grads)
    }
}

impl<const IN: usize, const OUT: usize, F> FnOnce<(&[Tensor; IN],)> for ValueAndGradFunc<IN, OUT, F>
where
    F: Function<IN, OUT> + Clone + 'static,
{
    type Output = ([Tensor; OUT], [Tensor; IN]);

    extern "rust-call" fn call_once(self, args: (&[Tensor; IN],)) -> Self::Output {
        let inputs = args.0;
        self.call(inputs)
    }
}

impl<const IN: usize, const OUT: usize, F> FnMut<(&[Tensor; IN],)> for ValueAndGradFunc<IN, OUT, F>
where
    F: Function<IN, OUT> + Clone + 'static,
{
    extern "rust-call" fn call_mut(&mut self, args: (&[Tensor; IN],)) -> Self::Output {
        let inputs = args.0;
        self.call(inputs)
    }
}

impl<const IN: usize, const OUT: usize, F> Fn<(&[Tensor; IN],)> for ValueAndGradFunc<IN, OUT, F>
where
    F: Function<IN, OUT> + Clone + 'static,
{
    extern "rust-call" fn call(&self, args: (&[Tensor; IN],)) -> Self::Output {
        let inputs = args.0;
        self.call(inputs)
    }
}

#[tracing::instrument(skip(func), level = Level::TRACE)]
pub fn grad<const IN: usize, const OUT: usize, F>(func: F) -> GradFunc<IN, OUT, F>
where
    F: Function<IN, OUT> + Clone + 'static,
{
    GradFunc::new(func)
}

pub fn value_and_grad<const IN: usize, const OUT: usize, F>(func: F) -> ValueAndGradFunc<IN, OUT, F>
where
    F: Function<IN, OUT> + Clone + 'static,
{
    ValueAndGradFunc::new(func)
}

// TODO: args with retain_graph?
pub fn eval<T: TensorIter>(args: T) {
    let mut tape = BTreeSet::new();
    for output in args.tensor_iter() {
        topological_sort(&mut tape, output);
    }
    for t in tape.into_iter() {
        {
            let backend = t.backend();
            let primitive = t.primitive();
            let inputs = &*t.inputs();
            let rule = eval_rule(backend, primitive).unwrap_or_else(|| {
                panic!(
                    "no eval rule for backend: {:?}, primitive: {:?}",
                    backend, primitive
                )
            });
            rule.eval(backend, primitive, inputs, &t);
        }
        t.detach();
    }
}

fn topological_sort(tape: &mut BTreeSet<Tensor>, t: &Tensor) {
    for input in t.inputs().iter() {
        if !t.is_evalualted() {
            topological_sort(tape, input);
        }
    }
    if t.is_evalualted() || tape.contains(t) {
        return;
    }
    tape.insert(t.clone());
}