1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
// Copyright (c) 2017-present, PingCAP, Inc. Licensed under Apache-2.0.

//! Helper types to recover in-memory states from log files.

use std::collections::VecDeque;
use std::fs::{self, File};
use std::marker::PhantomData;
use std::path::Path;
use std::sync::Arc;

use fs2::FileExt;
use log::{error, info, warn};
use rayon::prelude::*;

use crate::config::{Config, RecoveryMode};
use crate::env::FileSystem;
use crate::event_listener::EventListener;
use crate::log_batch::LogItemBatch;
use crate::pipe_log::{FileId, FileSeq, LogQueue};
use crate::util::Factory;
use crate::{Error, Result};

use super::format::{lock_file_path, FileNameExt, LogFileFormat};
use super::log_file::build_file_reader;
use super::pipe::{DualPipes, FileWithFormat, SinglePipe};
use super::reader::LogItemBatchFileReader;
use crate::env::Handle;

/// `ReplayMachine` is a type of deterministic state machine that obeys
/// associative law.
///
/// Sequentially arranged log items can be divided and replayed to several
/// [`ReplayMachine`]s, and their merged state will be the same as when
/// replayed to one single [`ReplayMachine`].
///
/// This abstraction is useful for recovery in parallel: a set of log files can
/// be replayed in a divide-and-conquer fashion.
pub trait ReplayMachine: Send {
    /// Inputs a batch of log items from the given file to this machine.
    /// Returns whether the input sequence up till now is accepted.
    fn replay(&mut self, item_batch: LogItemBatch, file_id: FileId) -> Result<()>;

    /// Merges with another [`ReplayMachine`] that has consumed newer log items
    /// in the same input sequence.
    fn merge(&mut self, rhs: Self, queue: LogQueue) -> Result<()>;
}

/// A factory of [`ReplayMachine`]s that can be default constructed.
#[derive(Clone, Default)]
pub struct DefaultMachineFactory<M>(PhantomData<std::sync::Mutex<M>>);

impl<M: ReplayMachine + Default> Factory<M> for DefaultMachineFactory<M> {
    fn new_target(&self) -> M {
        M::default()
    }
}

/// Container for basic settings on recovery.
pub struct RecoveryConfig {
    pub queue: LogQueue,
    pub mode: RecoveryMode,
    pub concurrency: usize,
    pub read_block_size: u64,
}

struct FileToRecover<F: FileSystem> {
    seq: FileSeq,
    handle: Arc<F::Handle>,
    format: Option<LogFileFormat>,
}

/// [`DualPipes`] factory that can also recover other customized memory states.
pub struct DualPipesBuilder<F: FileSystem> {
    cfg: Config,
    file_system: Arc<F>,
    listeners: Vec<Arc<dyn EventListener>>,

    /// Only filled after a successful call of `DualPipesBuilder::scan`.
    dir_lock: Option<File>,
    /// Only filled after a successful call of `DualPipesBuilder::scan`.
    append_files: Vec<FileToRecover<F>>,
    /// Only filled after a successful call of `DualPipesBuilder::scan`.
    rewrite_files: Vec<FileToRecover<F>>,
}

impl<F: FileSystem> DualPipesBuilder<F> {
    /// Creates a new builder.
    pub fn new(cfg: Config, file_system: Arc<F>, listeners: Vec<Arc<dyn EventListener>>) -> Self {
        Self {
            cfg,
            file_system,
            listeners,
            dir_lock: None,
            append_files: Vec::new(),
            rewrite_files: Vec::new(),
        }
    }

    /// Scans for all log files under the working directory. The directory will
    /// be created if not exists.
    pub fn scan(&mut self) -> Result<()> {
        let dir = &self.cfg.dir;
        let path = Path::new(dir);
        if !path.exists() {
            info!("Create raft log directory: {}", dir);
            fs::create_dir(dir)?;
            self.dir_lock = Some(lock_dir(dir)?);
            return Ok(());
        }
        if !path.is_dir() {
            return Err(box_err!("Not directory: {}", dir));
        }
        self.dir_lock = Some(lock_dir(dir)?);

        let (mut min_append_id, mut max_append_id) = (u64::MAX, 0);
        let (mut min_rewrite_id, mut max_rewrite_id) = (u64::MAX, 0);
        fs::read_dir(path)?.for_each(|e| {
            if let Ok(e) = e {
                let p = e.path();
                if p.is_file() {
                    match FileId::parse_file_name(p.file_name().unwrap().to_str().unwrap()) {
                        Some(FileId {
                            queue: LogQueue::Append,
                            seq,
                        }) => {
                            min_append_id = std::cmp::min(min_append_id, seq);
                            max_append_id = std::cmp::max(max_append_id, seq);
                        }
                        Some(FileId {
                            queue: LogQueue::Rewrite,
                            seq,
                        }) => {
                            min_rewrite_id = std::cmp::min(min_rewrite_id, seq);
                            max_rewrite_id = std::cmp::max(max_rewrite_id, seq);
                        }
                        _ => {}
                    }
                }
            }
        });

        for (queue, min_id, max_id, files) in [
            (
                LogQueue::Append,
                min_append_id,
                max_append_id,
                &mut self.append_files,
            ),
            (
                LogQueue::Rewrite,
                min_rewrite_id,
                max_rewrite_id,
                &mut self.rewrite_files,
            ),
        ] {
            if max_id > 0 {
                // Try to cleanup stale metadata left by the previous version.
                let max_sample = 100;
                // Find the first obsolete metadata.
                let mut delete_start = None;
                for i in 0..max_sample {
                    let seq = i * min_id / max_sample;
                    let file_id = FileId { queue, seq };
                    let path = file_id.build_file_path(dir);
                    if self.file_system.exists_metadata(&path) {
                        delete_start = Some(i.saturating_sub(1) * min_id / max_sample + 1);
                        break;
                    }
                }
                // Delete metadata starting from the oldest. Abort on error.
                if let Some(start) = delete_start {
                    let mut success = 0;
                    for seq in start..min_id {
                        let file_id = FileId { queue, seq };
                        let path = file_id.build_file_path(dir);
                        if let Err(e) = self.file_system.delete_metadata(&path) {
                            error!("failed to delete metadata of {}: {}.", path.display(), e);
                            break;
                        }
                        success += 1;
                    }
                    warn!(
                        "deleted {} stale files of {:?} in range [{}, {}).",
                        success, queue, start, min_id,
                    );
                }
                for seq in min_id..=max_id {
                    let file_id = FileId { queue, seq };
                    let path = file_id.build_file_path(dir);
                    if !path.exists() {
                        warn!(
                            "Detected a hole when scanning directory, discarding files before {:?}.",
                            file_id,
                        );
                        files.clear();
                    } else {
                        let handle = Arc::new(self.file_system.open(&path)?);
                        files.push(FileToRecover {
                            seq,
                            handle,
                            format: None,
                        });
                    }
                }
            }
        }
        Ok(())
    }

    /// Reads through log items in all available log files, and replays them to
    /// specific [`ReplayMachine`]s that can be constructed via
    /// `machine_factory`.
    pub fn recover<M: ReplayMachine, FA: Factory<M>>(
        &mut self,
        machine_factory: &FA,
    ) -> Result<(M, M)> {
        let threads = self.cfg.recovery_threads;
        let pool = rayon::ThreadPoolBuilder::new()
            .num_threads(threads)
            .build()
            .unwrap();
        let (append_concurrency, rewrite_concurrency) =
            match (self.append_files.len(), self.rewrite_files.len()) {
                (a, b) if a > 0 && b > 0 => {
                    let a_threads = std::cmp::max(1, threads * a / (a + b));
                    let b_threads = std::cmp::max(1, threads.saturating_sub(a_threads));
                    (a_threads, b_threads)
                }
                _ => (threads, threads),
            };
        let append_recovery_cfg = RecoveryConfig {
            queue: LogQueue::Append,
            mode: self.cfg.recovery_mode,
            concurrency: append_concurrency,
            read_block_size: self.cfg.recovery_read_block_size.0,
        };
        let rewrite_recovery_cfg = RecoveryConfig {
            queue: LogQueue::Rewrite,
            concurrency: rewrite_concurrency,
            ..append_recovery_cfg
        };
        let append_files = &mut self.append_files;
        let rewrite_files = &mut self.rewrite_files;
        let file_system = self.file_system.clone();
        // As the `recover_queue` would update the `LogFileFormat` of each log file
        // in `apend_files` and `rewrite_files`, we re-design the implementation on
        // `recover_queue` to make it compatiable to concurrent processing
        // with ThreadPool.
        let (append, rewrite) = pool.join(
            || {
                DualPipesBuilder::recover_queue_imp(
                    file_system.clone(),
                    append_recovery_cfg,
                    append_files,
                    machine_factory,
                )
            },
            || {
                DualPipesBuilder::recover_queue_imp(
                    file_system.clone(),
                    rewrite_recovery_cfg,
                    rewrite_files,
                    machine_factory,
                )
            },
        );
        Ok((append?, rewrite?))
    }

    /// Manually reads through log items in all available log files of the
    /// specified queue, and replays them to specific [`ReplayMachine`]s
    /// that can be constructed via `machine_factory`.
    fn recover_queue_imp<M: ReplayMachine, FA: Factory<M>>(
        file_system: Arc<F>,
        recovery_cfg: RecoveryConfig,
        files: &mut Vec<FileToRecover<F>>,
        replay_machine_factory: &FA,
    ) -> Result<M> {
        if recovery_cfg.concurrency == 0 || files.is_empty() {
            return Ok(replay_machine_factory.new_target());
        }
        let queue = recovery_cfg.queue;
        let concurrency = recovery_cfg.concurrency;
        let recovery_mode = recovery_cfg.mode;
        let recovery_read_block_size = recovery_cfg.read_block_size as usize;

        let max_chunk_size = std::cmp::max((files.len() + concurrency - 1) / concurrency, 1);
        let chunks = files.par_chunks_mut(max_chunk_size);
        let chunk_count = chunks.len();
        debug_assert!(chunk_count <= concurrency);
        let sequential_replay_machine = chunks
            .enumerate()
            .map(|(index, chunk)| {
                let mut reader =
                    LogItemBatchFileReader::new(recovery_read_block_size);
                let mut sequential_replay_machine = replay_machine_factory.new_target();
                let file_count = chunk.len();
                for (i, f) in chunk.iter_mut().enumerate() {
                    let is_last_file = index == chunk_count - 1 && i == file_count - 1;
                    let mut file_reader = build_file_reader(file_system.as_ref(), f.handle.clone())?;
                    match file_reader.parse_format() {
                        Err(e) => {
                            // TODO: More reliable tail detection.
                            if recovery_mode == RecoveryMode::TolerateAnyCorruption
                              || recovery_mode == RecoveryMode::TolerateTailCorruption
                                && is_last_file {
                                warn!(
                                    "File header is corrupted but ignored: {:?}:{}, {}",
                                    queue, f.seq, e
                                );
                                f.handle.truncate(0)?;
                                f.format = Some(LogFileFormat::default());
                                continue;
                            } else {
                                error!(
                                    "Failed to open log file due to broken header: {:?}:{}",
                                    queue, f.seq
                                );
                                return Err(e);
                            }
                        },
                        Ok(format) => {
                            f.format = Some(format);
                            reader.open(FileId { queue, seq: f.seq }, format, file_reader)?;
                        }
                    }
                    loop {
                        match reader.next() {
                            Ok(Some(item_batch)) => {
                                sequential_replay_machine
                                    .replay(item_batch, FileId { queue, seq: f.seq })?;
                            }
                            Ok(None) => break,
                            Err(e)
                                if recovery_mode == RecoveryMode::TolerateTailCorruption
                                    && is_last_file =>
                            {
                                warn!(
                                    "The last log file is corrupted but ignored: {:?}:{}, {}",
                                    queue, f.seq, e
                                );
                                f.handle.truncate(reader.valid_offset())?;
                                break;
                            }
                            Err(e) if recovery_mode == RecoveryMode::TolerateAnyCorruption => {
                                warn!(
                                    "File is corrupted but ignored: {:?}:{}, {}",
                                    queue, f.seq, e
                                );
                                f.handle.truncate(reader.valid_offset())?;
                                break;
                            }
                            Err(e) => {
                                error!(
                                    "Failed to open log file due to broken entry: {:?}:{} offset={}",
                                    queue, f.seq, reader.valid_offset()
                                );
                                return Err(e);
                            }
                        }
                    }
                }
                Ok(sequential_replay_machine)
            })
            .try_reduce(
                || replay_machine_factory.new_target(),
                |mut sequential_replay_machine_left, sequential_replay_machine_right| {
                    sequential_replay_machine_left.merge(sequential_replay_machine_right, queue)?;
                    Ok(sequential_replay_machine_left)
                },
            )?;

        Ok(sequential_replay_machine)
    }

    /// Manually reads through log items in all available log files of the
    /// specified `[LogQueue]`, and replays them to specific
    /// [`ReplayMachine`]s that can be constructed via `machine_factory`.
    #[allow(dead_code)]
    pub fn recover_queue<M: ReplayMachine, FA: Factory<M>>(
        &mut self,
        file_system: Arc<F>,
        recovery_cfg: RecoveryConfig,
        replay_machine_factory: &FA,
    ) -> Result<M> {
        let files = if recovery_cfg.queue == LogQueue::Append {
            &mut self.append_files
        } else {
            &mut self.rewrite_files
        };
        DualPipesBuilder::recover_queue_imp(
            file_system,
            recovery_cfg,
            files,
            replay_machine_factory,
        )
    }

    /// Builds a new storage for the specified log queue.
    fn build_pipe(&self, queue: LogQueue) -> Result<SinglePipe<F>> {
        let files = match queue {
            LogQueue::Append => &self.append_files,
            LogQueue::Rewrite => &self.rewrite_files,
        };
        let first_seq = files.first().map(|f| f.seq).unwrap_or(0);
        let files: VecDeque<FileWithFormat<F>> = files
            .iter()
            .map(|f| FileWithFormat {
                handle: f.handle.clone(),
                format: f.format.unwrap(),
            })
            .collect();
        SinglePipe::open(
            &self.cfg,
            self.file_system.clone(),
            self.listeners.clone(),
            queue,
            first_seq,
            files,
            match queue {
                LogQueue::Append => self.cfg.recycle_capacity(),
                LogQueue::Rewrite => 0,
            },
        )
    }

    /// Builds a [`DualPipes`] that contains all available log files.
    pub fn finish(self) -> Result<DualPipes<F>> {
        let appender = self.build_pipe(LogQueue::Append)?;
        let rewriter = self.build_pipe(LogQueue::Rewrite)?;
        DualPipes::open(self.dir_lock.unwrap(), appender, rewriter)
    }
}

/// Creates and exclusively locks a lock file under the given directory.
pub(super) fn lock_dir(dir: &str) -> Result<File> {
    let lock_file = File::create(lock_file_path(dir))?;
    lock_file.try_lock_exclusive().map_err(|e| {
        Error::Other(box_err!(
            "Failed to lock file: {}, maybe another instance is using this directory.",
            e
        ))
    })?;
    Ok(lock_file)
}